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Context

Onera:
• The first French national aerospace research

center;
• Multidisciplinary researches concerning aero-

nautics and aerospace;
• Trajectory planning for aerial vehicles is an in-

teresting topic. Thus, several approaches have
been studied.

PhD thesis:
• This paper is a part of the PhD thesis at Univer-

sité d’Évry-Val-d’Essonne;
• The objective of the thesis is to find an efficient

trajectory planning algorithm for aerial vehicles;
• Constraints related to environment, mission,

and obstacles must be considered.

Challenges

Motivations:
• Trajectory planning is a high-demand algorithm

for aerial vehicles;
• The existing classical control laws rely on some

restrictive approximation. For such complex
systems and missions, the optimal problem
needs to be considered globally;

• The obstacles induce state constraints that are
very difficult to consider with the numerical di-
rect and indirect methods;

Problem statement:
• Non-linear and non-holonomic system:

x′ = dx

ds
= cos θ,

z′ = dz

ds
= sin θ,

θ′ = dθ

ds
= c(z)u, |u| 6 1

(1)

where u ∈ R is the control input and c(z) ∈ R+ is
the maximum curvature that can be performed
by the vehicle at the altitude z.

• Heterogeneous environment: decrease of the
air density with altitude z, i.e. ρ(z) = ρ0e

−z/zr
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Figure 1: Air density and atmospheric pressure
with respect to altitude (US-76 model)
⇒ Loss of maneuverability in high altitude:

u ≺ ρ(z)

.• Path planning in an environment cluttered with
obstacles;

• Optimal trajectory from xinit to Xgoal.
Proposed approach:
The combination of:
• Path planner: The optimal Rapidly-exploring

Random Tree (RRT*);
• Optimal control theory: Dubins’ paths in hetero-

geneous environments.

Trajectory planning framework

Optimal Rapidly-exploring Random Trees (RRT*)1

An incremental method designed to efficiently explore non-
convex high-dimensional spaces by growing the search tree
toward large Voronoi areas2 with the asymptotic optimality
property, i.e. almost-sure convergence to an optimal solu-
tion.
Principles: Generation of an exploration tree to search the
exploration space while looking for the optimal path by veri-
fying, deconnecting and reconnecting branches.
• The tree is expanded

towards a randomly
generated state xrand
and obtain xnew;

• The tree grows to-
wards xnew from the
state xnearest in the
neighborhood xnear of
xnew whose cost-to-
go from xnearest to xnew
is the lowest (see Fig-
ure 2);

• If there exists a path
from xnew to states
in the neighborhood
xnear with less cost-to-
go from xinit to xnew,
those paths are re-
placed (see Figure 3).
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Figure 2: Process in finding the
nearest path to xnew
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Figure 3: Rewire process of the tree
around xnew

Dubins’ paths in heterogeneous environments3

(i) CCC type (ii) CSC types
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Figure 4: Dubins’ paths

Dubins’ paths illustrated
in Figure 4 are the
shortest paths between
two states of Dubins’
vehicle (see equation
(1)) based on the op-
timal control theory4.
However, they are not
realistic for the aerial
vehicle traveling in the
vertical plane.

Dubins’ paths in hetero-
geneous environments
are developed to ob-
tain more realistic path
for aerial vehicles. The
shortest Dubins’ path is
used as a metric in
the RRT* algorithm as
well as the path gen-
eration. In the aerial
vehicle application, two
states are considered
far from each other.
Thus, only the CSC
paths are considered5

(see Figure 5).

−30 −20 −10 0 10 20

5

10

15

20

25

30

35

40

horizontal distance (km)

al
ti
tu
d
e
(k
m
)

C
x1

x2

S

C

Figure 5: An example of a Dubins’
path of CSC type in heterogeneous
environment
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Simulation results
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( a ) 100 iterations
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( b ) 150 iterations
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( c ) 300 iterations

Figure 6: Exploration tree expansion and results for scenario 1
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Figure 7: Simulation result for
scenario 2 obtained after 400
iteration

Perspectives & Future works

• 3D Dubins’ paths6:
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Figure 8: Four possible CSC paths between two
states

• Replanning;

• 3D path planning7:

Figure 9: Exploration trees and results after 200 iterations

• Real-time constraints for implementation on board the vehicles
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