Shortest path for aerial vehicles in heterogeneous environment using RRT*

Pawit Pharpatara, Bruno Hérissé, Roman Pepy, Yasmina Bestaoui

Onera - the French Aerospace Lab & Université d'Évry-Val-d'Essonne

pawit.pharpatara@onera.fr,bruno.herisse@onera.fr, romain.pepy@onera.fr,yasmina.Bestaoui@ufrst.univ-evry.fr

THE FRENCH AEROSPACE LAB

Context

Onera:

The first French national aerospace research center;

Optimal Rapidly-exploring Random Trees (RRT*)¹

An incremental method designed to efficiently explore non-

Dubins' paths in heterogeneous environments³

- Multidisciplinary researches concerning aeronautics and aerospace;
- Trajectory planning for aerial vehicles is an interesting topic. Thus, several approaches have been studied.

PhD thesis:

- This paper is a part of the PhD thesis at Université d'Évry-Val-d'Essonne;
- The objective of the thesis is to find an efficient trajectory planning algorithm for aerial vehicles;
- Constraints related to environment, mission, and obstacles must be considered.

Challenges

Motivations:

- Trajectory planning is a high-demand algorithm for aerial vehicles;
- The existing classical control laws rely on some restrictive approximation. For such complex systems and missions, the optimal problem needs to be considered globally;
- The obstacles induce state constraints that are very difficult to consider with the numerical direct and indirect methods;

convex high-dimensional spaces by growing the search tree toward large Voronoi areas² with the asymptotic optimality property, i.e. almost-sure convergence to an optimal solution.

Principles: Generation of an exploration tree to search the exploration space while looking for the optimal path by verifying, deconnecting and reconnecting branches.

- The tree is expanded towards a randomly generated state x_{rand} and obtain x_{new};
- The tree grows towards x_{new} from the state $x_{nearest}$ in the
- state $x_{nearest}$ in the neighborhood x_{near} of x_{new} whose cost-to-
- go from $x_{nearest}$ to x_{new} is the lowest (see Figure 2);
- If there exists a path from x_{new} to states in the neighborhood x_{near} with less cost-togo from x_{init} to x_{new} , those paths are replaced (see Figure 3).

S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incremental sampling-based methods, In Proceedings of the International Conference on Decision and Control, Pages 7681-7687, 2010

Trajectory planning framework

² G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques, Journal fur die Reine und Angewandte Mathematik, Vol. 133, Pages 97-178, 1907.

Xnew Xnearest

³ B. Hérissé and R. Pepy. Shortest paths for the dubins' vehicle in heterogeneous environments, In Proceedings of the International Conference on Decision and Control, Pages 4504-4509, 2013.

Problem statement:

• Non-linear and non-holonomic system:

$$x' = \frac{dx}{ds} = \cos \theta,$$

$$z' = \frac{dz}{ds} = \sin \theta,$$

$$\theta' = \frac{d\theta}{ds} = c(z)u, \quad |u| \le 1$$

(1)

where $u \in \mathbb{R}$ is the control input and $c(z) \in \mathbb{R}_+$ is the maximum curvature that can be performed by the vehicle at the altitude z.

• Heterogeneous environment: decrease of the air density with altitude z, *i.e.* $\rho(z) = \rho_0 e^{-z/z_r}$

Figure 1: Air density and atmospheric pressure with respect to altitude (US-76 model)

¹ L. E. Dubins. On curves of minimal length with a constraint on average curvature and with presribed initial and terminal position and tangents, American Journal of Mathematics, Vol. 79, Pages 497-516, 1957.

⁵ A. M. Shkel and V. Lumelsky. <u>Classification of the dubins set</u>, Robotics and Autonomous Systems, Vol. 34, Pages 179-202, 2001.

 \Rightarrow Loss of maneuverability in high altitude:

- Path planning in an environment cluttered with obstacles;
- Optimal trajectory from \mathbf{x}_{init} to \mathbb{X}_{goal} .

Proposed approach:

- The combination of:
- Path planner: The optimal Rapidly-exploring Random Tree (RRT*);
- Optimal control theory: Dubins' paths in heterogeneous environments.

Figure 8: Four possible CSC paths between two states

• Replanning;

Figure 9: Exploration trees and results after 200 iterations

• Real-time constraints for implementation on board the vehicles

⁶ P. Pharpatara, B. Hérissé, Y. Bestaoui. <u>3D-shortest paths for a hypersonic glider in a heterogeneous environment</u>, In Proceedings of the IFAC Workshop on Advances Control and Navigation for Autonomous Aerospace Vehicles , to appear, 2015.

⁷ P. Pharpatara, B. Hérissé, Y. Bestaoui. <u>3D trajectory planning of aerial vehicles using RRT*</u>, IEEE Transaction on Control Systems Technology, submitted.