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This paper presents recent advances at ONERA in simulation engineering. Simulation 
is used for many purposes, from performance evaluation of algorithms to realistic 

emulation of the real world, including real components such as humans. To design 
general and scalable simulation software, a flexible architecture needs to be designed. 
A component-based architecture approach that allows multilevel capitalization and 
high collaborative sharing between systems experts and computing experts has been 
developed at ONERA. This architecture allow hybrid simulation involving real devices 
in the simulation loop to increase the Technology Readiness Level of novel algorithms 
by emulating real embedded environment. Human-In-the-Loop simulation is also an 
important tool to study the human interactions with a system. Some recent research 
projects are presented to illustrate our simulation platforms. 

Introduction

Simulation is a more and more demanding tool

The main role of computer simulation is to simulate physical or non-
physical phenomena that intervene in a system. This is achieved 
using analytical and numerical models but also black box functions 
stemming from an unknown subsystem, for example. Using these 
models, simulation platforms are often dedicated to facilitating design 
of systems and evaluation of their performance, their safety and their 
reliability (for controller design, mechanical design, etc.). For techni-
cal or cost reasons, using simulation for testing new systems involv-
ing complex algorithms, new technological components or testing 
human behavior in specific contexts can be the best way to achieve 
the project requirements according to its Technology Readiness Level 
(TRL). The scientific projects in which ONERA is involved have differ-
ent TRL. Therefore, simulation platforms have to be sufficiently flex-
ible to meet all research needs. 

Simulation has evolved along with computers. From the 80s, object 
programming languages allowed the ability to work with advanced 
software components to be exploited. The first simulations were 
often monolithic, but tended to complex architectures that address 
systems and system of systems [1] [2] very well. Software design 
took a new direction, with business issues considered in the archi-
tecture design to meet new objectives: the capitalization and the 
maintainability of code. The component-based approach that is 
being developed at ONERA and detailed below illustrates this need 
to produce a reference code useful for business experts as well as 
for software experts.

With the increasing power of computers, simulation tools can provide 
results with more and more precision and always faster. However, 
scientist and engineer demand is also increasing with this respect. 
Indeed, the improvement of output precision implies more complex 
models that need more computation power on specific architectures. 
Therefore, in order to respond efficiently to the requirements, hard-
ware and software architectures for simulations have to be heteroge-
neous and multiple. Thus, a key challenge for software engineers is 
to design simulations that manage multithreading, distributed archi-
tectures and hardware acceleration (using GPU or FPGA chips for 
instance). Another challenging problem consists in ensuring repeat-
ability, reliability and portability of the simulation tool. 

Simulation interacts with the real world

Increasingly, the use of simulation is extended to interact with the 
real world, including humans, using physical devices as interfaces 
(network communication devices, haptic interfaces, flight pilot simu-
lator with emulated cockpit, etc.). Such simulation platforms are 
made to ensure a complete immersion of the target component being 
assessed in its environment. For example, the analysis of human 
behavior (stress, panic, etc.) in a cockpit can be evaluated correctly 
only if the simulation environment is sufficiently accurate and coher-
ent in terms of motion and vibration especially. Moreover, training and 
education can use high fidelity simulation for a better experience (3D 
simulation with haptic devices in medical education for example). 
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Thus, simulation of complex systems can include several specific 
simulators for each actor of the considered system, as well as real 
data stemming from a running system, such as a radar detection 
system or a decision platform. The simulation can also interact with 
humans via a flight simulator or a supervision platform. Moreover, 
hardware devices, such as embedded computers and sensors, can 
be incorporated into the simulation to assess their performance under 
realistic conditions before considering their use onboard a real sys-
tem. In this paper, some of ONERA’s simulation means are presented 
through some past and current research developments that involve 
real components in the simulation loop. 

Designing relevant simulation

For a simulation platform to be fully reliable, the right behavior is fun-
damental to correctly emulate the real world. Therefore, evaluation 
tools are necessary. Taking advantage of the fact that all input and 
output signals are observable in a simulation test, such simulation 
tools can be designed. For example, in a Simulink simulation [3] or a 
LabVIEW simulation [4], all wires connecting component blocks can 
be checked in real-time with available viewers. Most real-time operat-
ing systems can be simulated to observe the full system behavior 
for every time step, using the associated tool such as WindView for 
VxWorks [5]. Profiling tools are also available for the recent Robotic-
Operating-System [6] used for robotic applications. However, work 
remains to be done to interpret this flow of data in real-time and 
autonomously, so that supervision of the simulation and reconfigura-
tions are possible. For example, communication based on an Ethernet 
network must be robust to packet loss using dead reckoning tech-
niques. Such tools make it possible to verify that the simulation pro-
vides the right output related to the given input only empirically. To 
be fully reliable, formal proof should be provided in order to ensure a 
deterministic behavior [7].

Another important challenge raised by simulation is to make both the 
input data easy to enter in the simulation and the output result useful 
for the user. Ideally, the user should not have to understand how the 
tool is designed. This necessitates suitable autonomous interpreters 
that bridge the gap between the simulation and the user. Moreover, 

the simulator should be able to adapt its models to the required output 
precision by means of automatic model reduction, for example.  

Simulation platforms at ONERA

This paper is aimed at presenting some of the simulation platforms 
available at ONERA through some recent or ongoing projects. It is 
organized as follows. In the next section, the architecture of the 
simulation Platform developed by engineers at ONERA is presented. 
Then, we focus on three topics of interest for our current and future 
advanced testing developments: interconnection of simulators in a 
distributed system, Hardware-In-the-Loop simulation and Human-In-
the-Loop simulation.

Architecture of the simulation Platform

To efficiently design a software architecture understandable by both 
business experts and software engineers, it is necessary to develop 
a methodology based on a multilayer approach (Figure 1). Indeed, 
system studies sometimes require variable granularity models: very 
coarse to very fine simulation considering complex physical phenom-
ena. The architecture implementation must be robust to this scaling 
problem. This implies the definition of the adequate scope for each 
component, as well as for the corresponding interfaces.

In the case of systems and systems of systems, this subdivision can 
be performed by functions or by physical architectures. Functional 
separation will be preferred for macroscopic levels and technical cut-
ting up for low levels. To facilitate the work, it is helpful to use a pattern 
for arranging components in relation to each other. In our case, we 
used the SCA paradigm (Sensor / Controller / Actuator) well-known 
in the field of automatic control and especially suitable for addressing 
engineering systems.

Component-based subdivision of the system

An actor in the simulation, also called agent in some cases, con-
sists of components. A component is a block consisting of a model.  
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Figure 1 – Simulation levels of Systems
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The purpose of this component consists in processing input data  
(the control u) to provide output data y. For technical components 
modeling the dynamics of a physical system, a simplified abstract 
representation is given below:

where g is the output function, x is the state and f is a continuous 
state function. For functional components, the representation does 
not involve time or internal state:

Definition of interfaces

For the communication between the components to be possible, it is 
necessary for their interfaces to be compatible. In our approach, an 
event mechanism is used. Once a component has finished a job, a 
new event is produced as a message and broadcasted directly to com-
ponents that have subscribed to it. Each component is responsible for 

its subscription to the messages of interest. An initialization step is 
performed before the simulation is launched, to ensure that all of the 
communication channels are set up. During the simulation, a callback 
is run by a manager responsible for calling the broadcasting function 
when it is necessary.

Multi-level compatibility is ensured by a scale effect on each compo-
nent. Indeed, it is possible to divide a component A into sub-compo-
nents {A.1, A.2, ..., A.n}. The interface between a component A and 
a component B implies the interfacing between the components {A.1, 
A.2, ..., A.n}  and B. This means that the inter-component interfaces 
should remain the same. However, the intra-component interfaces 
can be defined regardless of the outside and may be more specific 
or less generic.

Implementation of the simulated system

The architecture presented in Figure 2 is organized around a master 
(the SimulationManager), it is able to access all of the players (the 
Entity) in the simulation, as well as process them over time. These 
players consist of components that can be functional if the time is not 
a necessary input data for updating, or technical if a temporal integra-
tion mechanism is needed. Communication between components is 
ensured by a specific object (the CommunicationManager) attached to 
the master. It is responsible for transmitting messages between play-
ers. In order to manage time in the simulation, a specific component 
(the Sequencer) is dedicated to managing the execution sequence.

CommunicationManager SimulationManager

Entity Component
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1 1
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1..*
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Sequencer

ComponentFunctional

+   update() : void

ComponentTechnical

+  OnTick(TickMessage) : void
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Figure 2 – Architecture of the simulation (class diagram)
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Managing discrete and continuous events

The management of discrete and continuous events is done by send-
ing messages. In the discrete case, a message can be any event sent 
punctually that will be processed upon receipt of the message modi-
fying the internal state of the component. In the continuous case, a 
time message (TickMessage in Figure 2) is sent at each step of the 
simulation. This time message contains the current simulation time 
and the time step thereby achieving, for example, an integration of the 
component state. Messages are communicated via a callback when it 
is necessary. Event-messages are sent instantly. Time messages are 
sent at each step (tick) of the simulation. For the purposes of specific 
inter-component communication, messages are sent instantly, thereby 
making available up-to-date data to meet the needs of each component.

As previously said, the management of simulation is performed by a 
master managing the events and the progress of each player and com-
ponent. For specific system needs, a new feature was implemented 
to allow each component to work at a different time step. Indeed, in 
most systems, sensors, controllers and actuators do not operate at 
the same speed. To be more representative of the physical reality, it is 
necessary to consider this time constraint in order to ensure that the 
system remains stable. For example, guidance and control modules of 
an aerospace vehicle do not operate with the same speed. Therefore, 
sub-tick management has been implemented in the Sequencer. More-
over, components need to be activated in a right order so that the loop 
progresses correctly over time. In our simulator, actuators, then sen-
sors, then controllers are activated successively in the simulation loop.

Interconnected simulation

The interconnection of a simulator with an external tool is quite com-
mon. Often, some processing and even some simulators are third 
party tools that cannot be integrated either with the used technologies 
or due to the intellectual property. The interconnection is very often 
based on a standard of communication so that it can be facilitated. 
The standard must be implemented on both sides and can some-
times be expensive, especially when a specific implementation meets 
a specific need. Two cases are considered here: a first case address-
ing interoperability between simulations through the use of standard 
High-Level-Architecture and a second case dealing with a specific 
interoperability with an external tool (which is not a simulator) pro-
cessing data during the simulation.

Distributed simulation

Distributed simulation offers the possibility of playing a simulation on 
several remote machines. In order to implement this type of simula-
tion, the High-Level-Architecture (HLA) [8] [9] [10] standard has been 
used at ONERA for twenty years [11]. The previously described simu-
lator provides a HLA gateway to map messages to the HLA standard. 
This standard describes the objects and shareable messages in a ref-
erence RPR-FOM [12]. The master of the simulation is a Run-Time-
Infrastructure (RTI) that manages time. Messages are timestamped 
and a dead-reckoning mechanism allows the Federated actors to have 
the right information at time t knowing the information at time (t – dt).

This kind of distributed simulation has been implemented many 
times at ONERA. In particular, tests in collaboration with the DGA 
(the French department of defense) in the simulation network SimDEx 

Defense (see Figure 3). In this experiment, some actors (Federated) 
were played at ONERA and the others at the DGA, thereby demon-
strating the feasibility of large-scale simulations involving many 
actors (industry, state, etc.).

In this example, interconnection consisted in providing the simulator 
with an external tool that is responsible for carrying out the fusion 
of data from the simulation. This tool is also involved in the simula-
tion chain, since it may send requests for additional information via an 
operator. Therefore, this simulation also deals with the Human-In-the-
Loop problem with this contribution of a human during the simulation. 
From the point of view of computer implementation, a specific gateway 
has been developed for converting the simulation events into SOAP 
messages. These XML SOAP messages are specific to our implemen-
tation. The data fusion tool only reacts to data from the simulation by 
processing them according to the current time of receipt. These mes-
sages are timestamped and sent by the simulator. A buffer mechanism 
was provided at the gateway for more flexibility in the transmission 
of data over the network. A synthetic scheme is proposed below in 
Figure 4. Note the specified processing loops representing a process. 
It was necessary to create a thread for receiving the simulation data 
so that the simulation loop is not blocked. The exchanges are ensured 
by two SOAP connections: sending simulator data (uplink) is done by 
the server to the client from the external tool; receiving data from the 
external tool simulator is done by the client simulator (downlink).
 
This work has contributed to highlighting the interconnection capac-
ity of the simulator with an external tool. The effort involved is more 
important when using a standard communication protocol is not pos-
sible. Preference is given to the use of gateways that can be capital-
ized without creating a strong connection with the simulator. Indeed, 
in our case, the gateway converts the simulation messages to SOAP 
messages without any useful gains (only a translation is carried out).

Industrial 
  Battle-labs

Operational 
Systems

DGA

L T O

NATO

C F B L n e t

ONERA

B L A D E

SlmDEX

Figure 3 – HLA distributed simulation in the SimDEx network
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Figure 4 – Example of a specific interconnection
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Hardware components in the simulation loop

The purpose of the Hardware-In-the-Loop (HIL) simulation is to evalu-
ate a real sub-component of an embedded system inside a simulation 
of the other components of the system. This method is widely used 
for system validation and verification. This is particularly interesting 
when the system is very complex and includes many hard compo-
nents (sensors, actuators, controllers, interfaces, etc.). Testing each 
component with real experiments could be very expensive, unaccept-
able or even impossible. For example, the control of a vehicle used 
under critical conditions requires many tests to ensure its robustness 
to every possible scenario, the HIL simulation then offers a cheap, 
safe and repeatable method for this purpose.

A HIL simulation is a real-time loop including three main components. 
The embedded hardware is the component that needs to be evalu-
ated. This often consists of a controller alone. However, real sensors 
and actuators can also be plugged into this controller. In that last 
case, another hardware component is necessary to emulate the plant 
model. For example, if a vehicle motor and its controller are tested 
in a HIL simulation, the motor load needs to be emulated by another 
physical component. If a vision-based algorithm is under test includ-
ing the camera, images of the modeled environment need to be gen-
erated [13]. The HIL simulation also includes a real-time computer 
implementing the plant model. Eventually, an I/O device is used for 
the communication. Indeed, for a complete evaluation of the embed-
ded component, the I/O interface is needed to communicate with the 
simulation using the real physical signals that are either feeding an 
actuator or generated by a sensor. Such a testing approach is often 
used in the design chain of a system controller. The HIL simulation 
constitutes the last test before validation with the real physical system 
after the other validation steps have been performed, that is, Model-
In-the-Loop (MIL), Software-In-the-Loop (SIL) and Processor-In-the-
Loop (PIL) simulations. Only the HIL and the PIL simulation can be 
used to verify that the execution time in the embedded processor fits 
within the required time. For PIL simulation, the interface between the 
embedded controller and the plant model is ensured by a standard 
communication such as Ethernet, while for the HIL simulation, the 

plant model is implemented on a hard real time computer, so that full 
real time simulation can be performed.

When a full complex system, such as the aerospace systems 
encountered at ONERA (missile systems for example), cannot be 
physically built and tested, PIL and HIL simulations offer a way for 
experimenting new algorithms in real time and under real conditions. 
Using this approach, the next section presents the experimentation of 
an advanced navigation and guidance algorithm currently being done 
in the DCPS department at ONERA.

Experiments of embedded advanced GNC algorithms in a HIL simulation

Experiments on advanced navigation and guidance algorithms are 
currently conducted in the DCPS department using the presented 
approach to demonstrate their performance in a realistic complex 
scenario.

The problem considered consists of both an interceptor missile and 
a cruise missile. The goal of the interceptor is to intercept the pos-
sibly maneuvering target (Figure 6). A ground station involving a radar 
detects the target and sends a predicted intercept point [14] to the 

Simulation platform

Embedded processor

Measurements
Control 
Estimated 
state

Figure 5 – Presentation of a HIL Simulation

Figure 6 – Presentation of the intercept scenario
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interceptor so that it can ensure the rendezvous. For this scenario, 
a controller is embedded in the interceptor for the midcourse guid-
ance [15] and a second controller is embedded in the cruise missile 
for navigation [16]. A short video presenting this project is available 
at the following URL: http://www.aerospacelab-journal.org/sites/ 
aerospacelab.onecert.fr/files/playlists/al12-15-video1.flv

The computing consumption of classical algorithms used in most aero-
space systems is low. Indeed, these algorithms often rely on analytical 
equations that can be computed very fast. Thus, cheap and low-power 
embedded processors are sufficient to ensure real time performance. 
Such classical algorithms are not satisfactory for complex missions 
involving navigation without GPS or optimal guidance, as considered 
here. Thus, advanced algorithms to address such problems have been 
developed. For the navigation of the cruise missile, specific particle fil-
ters were designed [16] [17] and for midcourse guidance of the inter-
ceptor, an indirect shooting method was designed [15]. These two 
algorithms are computationally demanding, since the first relies on the 
Monte-Carlo method and the second relies on iterative Newton meth-
ods [18]. Good performance is demonstrated in simulation results. 

However, it remains to be shown that these techniques can be embed-
ded with the same level of performance, that is, real time capabilities 
need to be verified on an embedded processor. 

To this end, a PIL simulation has been carried out: Figure 7 briefly pres-
ents the architecture of the simulation. A computer ensures the simula-
tion of the system consisting of three main components: the intercep-
tor component, the cruise missile component and the ground station 
component. The interceptor includes a subcomponent that ensures 
the computation of the control and the target component includes a 
subcomponent for navigation. Two modes are available: a full MIL 
simulated mode (control and navigation are modeled) and a PIL mode 
(control and navigation are ensured by embedded processors). For 
the PIL mode, the subcomponents directly transmit input data to the 
embedded processor through an Ethernet interface and the output data 
are acquired using the same interface. The processors that are used 
here are two Cyclone V SoC Development Kits from Altera that allow 
computing acceleration using the integrated FPGA [19]. Since the 
interface between the simulation and the embedded processors does 
not emulate real signals yet, this simulation is not fully HIL. However, 
as a first step, the PIL simulation is sufficient to verify that the proces-
sors can compute output data within the required time. 

The proposed simulation loop offers a tool that allows the team to 
experiment new algorithms in realistic situations, so that the practical 
feasibility of our algorithms can be demonstrated. However, critical 
aerospace applications demand a safe and deterministic behavior. 
Therefore, to increase the TRL of our novel algorithms, a formal veri-
fication of the developed software may be required [20]. For instance, 
some advanced algorithms developed at ONERA rely on optimization 
methods, such as the Newton method or the interior point method 
[21]. A formal analysis of such methods needs to verify that a given 
precision can be achieved for a given number of iterations. These 
deterministic properties are necessary to ensure that the imple-
mented algorithms can be qualified and transferred to industry. Future 
work will concentrate on these important issues.

ETHERNET INTERFACE

Interceptor embedded processor

Control Estimated state HARDWARE

Target embedded processor

Estimated state and PIP

Interceptor component

Guidance component

Sensor data

Cruise Missile component

Navigation component

SIMULATION

Target stateGround Station component
Predicted  
Intercept  
Point (PIP)

Figure 7 – Architecture of the PIL simulation

Video 1 – Hardware-In-the-Loop simulation for missile interception
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Human-in-the-loop simulation 

When a Human interacts with the simulation, the simulation is called 
Human-In-the-Loop. Such simulations can be used for training, for 
example (flight simulators for pilot training), or to assist in the design 
of virtual objects by creating a simulated environment. Human-In-
the-Loop simulation has been a focus of many research projects 
[22] [23] [24]. These projects generally consider how automation 
and humans can work together or in a joint environment. However, 
testing these algorithms and setting up experiments is often diffi-
cult, mainly due to lack of realistic simulations. Quantifying simula-
tion fidelity, using an engineering metrics approach, underpins the 
confidence in the successful completion of the conception-design-
build-test/qualification-production-operation cycle of aircraft, yet has 
been neglected in the aeronautical world. For fixed wing aircraft, the 
concept of zero flight time training using flight simulation is accepted 
and deemed necessary from a safety and cost standpoint. This must 
become the modus operandi for rotorcraft training. Simulators are 
commonly used to assess handling qualities and to develop crew-
station technologies. Attempts to quantify overall simulation fidelity 
within the framework of handling quality engineering have been pre-
sented in a number of forms in recent years. In [25] [26] [27], an 
approach based on pilot-aircraft modeling has been developed and 
the handling quality sensitivity function was introduced as the basis of 
a quality metric. In [28] and later in [29] the use of the handling quality 
standard (ADS-33E PRF 22) was proposed, for deriving metrics, the 
rationale here being that if the simulator is to be used to optimize han-
dling qualities, then what better parameters to judge fidelity than those 
defining the predicted handling. In [30] and [31], an approach using 
comparative measures of performance and control activity, correlated 
with handling quality ratings given for the same tasks when flown in 
simulation and in flight, was presented. In all of these approaches, 
the philosophy has been to try to develop a rational and systematic 
approach to the identification of the differences between simulation 
and flight, hence directing attention towards areas of deficiency. The 
partial success of these methods is encouraging, but only serves to 
highlight the need for fidelity criteria for use in design, development 
and product qualification. In these areas, flight simulation can be a 
primary source of data from which knowledge is derived, decisions 
are made and significant resources are committed; similar arguments 
can be made for the development of flight training.

A Human-In-the-Loop project at ONERA

An assessment methodology for human-in-the-loop simulation is 
under development at ONERA, using available experimental platforms 
(Figure 8) that addresses the Spatial Disorientation (SD) phenomenon, 
where pilots experience erroneous sensations about their orientation. 
One situation in which SD can occur is the go-around procedure. In 
some circumstances, go-around can lead to a somatogravic (i.e., 
vestibular) illusion (also termed false-climb) prevalent during high 
accelerations (or decelerations) when a pilot has no clear visual refer-
ence [32]. The "illusion" is a strong pitching sensation up (or down) 
when the body is exposed to high accelerations (or decelerations) 
[33]. This illusion is due to the limitation of the vestibular system, 
which detects changes in orientation without differentiating between 
head tilt backward and forward acceleration.

How to optimally simulate self-motion using motion simulators is still 
an unsolved problem, despite the fact that self-motion simulation is an 
essential part of all commercial flight and driving simulators. Flight simu-
lators used for pilot training and also most driving simulators strive to 
simulate motion trajectories that are considerably larger than the actual 
range of the physical simulator device. To do this, motion cueing algo-
rithms attempt to mimic the accelerations that act on the body during 
self-motion. While a larger range of movement allows for more accurate 
motion cueing, increasing the number of degrees of freedom and enlarg-
ing the movement range of the simulator raises the costs of the device 
considerably, and there are also technical limits to what kind of trajec-
tories can be performed in a simulator due to the limited motion enve-
lope and actuator power. It is therefore important to find techniques to 
believably simulate large trajectories using smaller movements that are 
within the limited movement range of the simulator. Presenting believable 
physical accelerations is an issue for psychophysical experiments that 
investigate the perception of self-motion in motion simulators.

Conclusion and perspectives

In this paper, the state of the ONERA’s simulation developments 
was presented. A component-based approach has been adopted to 
enable researchers and engineers to integrate their system develop-
ments as easily as possible into a common and stable software. For 
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Figure 8 – Some experimental means available at ONERA
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researchers, this offers the possibility of increasing the maturity of 
their innovative solutions using a very flexible simulation tool. More-
over, thanks to the modularity of the simulator, the accomplishment 
of multidisciplinary projects is facilitated for system engineers. In 
particular, the simulation platform includes hybrid simulation involv-
ing humans and real components. This allows the gap between pure 
simulation and real experiments to be bridged.

Future work will consist in feeding innovative technologies into the 
hybrid simulation platforms at Onera, so that complex future sys-
tems can be designed and tested efficiently. Thus, the simulation 
platform will constitute a wonderful tool to demonstrate proof of 
concepts for future systems and to facilitate transfer of technology. 
For example, using all Onera technologies integrated into a simula-
tion platform, future complex systems such as Reusable Launch 
Vehicles could be fully simulated and validated, including aerody-
namic phenomena, navigation, guidance and control, specific sen-
sors and actuators, etc.

Moreover, scientifically challenging problems still need to be explored, 
especially with regard to the management of simulation uncertainties: 
how can errors and inconsistencies be detected, and how can they 
be managed autonomously? Furthermore, the question of choosing 
the right granularity of models with respect to the assessed output 
remains open: both the real-time property and the output consistency 
need to be ensured at the same time. From a technical point of view, the 
simulation engine has to be improved to deal with studies that require 
very high precisions. The current engine is compliant with technical-
operational studies, but for other studies improvements must be made 
in the numerical analysis domain. The Discrete Event System Specifi-
cation (DEVS) is a formalism especially designed for the modeling and 
analysis of discrete event systems, as well as continuous state sys-
tems [34]. The idea is to manage the precision required by the experts 
in a transparent way. The engine will perform a fully integrated control 
of the time and of the events, in order to achieve the goal defined by 
the experts at the beginning of the experiment. 

Acronyms

TRL  (Technology Readiness Level)
HLA  (High Level Architecture)
SD (Spatial Disorientation)
HIL  (Hardware-In-the-Loop)
PIL  (Processor-In-the-Loop)
SIL  (Software-In-the-Loop)
MIL  (Model-In-the-Loop)
DCPS  (System Design and Performance Evaluation Department)
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