
Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 1

Testing in Aerospace Research

Component-Based Simulation
for Real-Time Experiments of

Advanced Aerospace Systems

B. Hérissé, G. Hervieux, K. Dahia,
J.-M. Allard, J.-C. Sarrazin
(ONERA)

E-mail: bruno.herisse@onera.fr

DOI: 10.12762/2016.AL12-15

This paper presents recent advances at ONERA in simulation engineering. Simulation
is used for many purposes, from performance evaluation of algorithms to realistic

emulation of the real world, including real components such as humans. To design
general and scalable simulation software, a flexible architecture needs to be designed.
A component-based architecture approach that allows multilevel capitalization and
high collaborative sharing between systems experts and computing experts has been
developed at ONERA. This architecture allow hybrid simulation involving real devices
in the simulation loop to increase the Technology Readiness Level of novel algorithms
by emulating real embedded environment. Human-In-the-Loop simulation is also an
important tool to study the human interactions with a system. Some recent research
projects are presented to illustrate our simulation platforms.

Introduction

Simulation is a more and more demanding tool

The main role of computer simulation is to simulate physical or non-
physical phenomena that intervene in a system. This is achieved
using analytical and numerical models but also black box functions
stemming from an unknown subsystem, for example. Using these
models, simulation platforms are often dedicated to facilitating design
of systems and evaluation of their performance, their safety and their
reliability (for controller design, mechanical design, etc.). For techni-
cal or cost reasons, using simulation for testing new systems involv-
ing complex algorithms, new technological components or testing
human behavior in specific contexts can be the best way to achieve
the project requirements according to its Technology Readiness Level
(TRL). The scientific projects in which ONERA is involved have differ-
ent TRL. Therefore, simulation platforms have to be sufficiently flex-
ible to meet all research needs.

Simulation has evolved along with computers. From the 80s, object
programming languages allowed the ability to work with advanced
software components to be exploited. The first simulations were
often monolithic, but tended to complex architectures that address
systems and system of systems [1] [2] very well. Software design
took a new direction, with business issues considered in the archi-
tecture design to meet new objectives: the capitalization and the
maintainability of code. The component-based approach that is
being developed at ONERA and detailed below illustrates this need
to produce a reference code useful for business experts as well as
for software experts.

With the increasing power of computers, simulation tools can provide
results with more and more precision and always faster. However,
scientist and engineer demand is also increasing with this respect.
Indeed, the improvement of output precision implies more complex
models that need more computation power on specific architectures.
Therefore, in order to respond efficiently to the requirements, hard-
ware and software architectures for simulations have to be heteroge-
neous and multiple. Thus, a key challenge for software engineers is
to design simulations that manage multithreading, distributed archi-
tectures and hardware acceleration (using GPU or FPGA chips for
instance). Another challenging problem consists in ensuring repeat-
ability, reliability and portability of the simulation tool.

Simulation interacts with the real world

Increasingly, the use of simulation is extended to interact with the
real world, including humans, using physical devices as interfaces
(network communication devices, haptic interfaces, flight pilot simu-
lator with emulated cockpit, etc.). Such simulation platforms are
made to ensure a complete immersion of the target component being
assessed in its environment. For example, the analysis of human
behavior (stress, panic, etc.) in a cockpit can be evaluated correctly
only if the simulation environment is sufficiently accurate and coher-
ent in terms of motion and vibration especially. Moreover, training and
education can use high fidelity simulation for a better experience (3D
simulation with haptic devices in medical education for example).

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 2

Thus, simulation of complex systems can include several specific
simulators for each actor of the considered system, as well as real
data stemming from a running system, such as a radar detection
system or a decision platform. The simulation can also interact with
humans via a flight simulator or a supervision platform. Moreover,
hardware devices, such as embedded computers and sensors, can
be incorporated into the simulation to assess their performance under
realistic conditions before considering their use onboard a real sys-
tem. In this paper, some of ONERA’s simulation means are presented
through some past and current research developments that involve
real components in the simulation loop.

Designing relevant simulation

For a simulation platform to be fully reliable, the right behavior is fun-
damental to correctly emulate the real world. Therefore, evaluation
tools are necessary. Taking advantage of the fact that all input and
output signals are observable in a simulation test, such simulation
tools can be designed. For example, in a Simulink simulation [3] or a
LabVIEW simulation [4], all wires connecting component blocks can
be checked in real-time with available viewers. Most real-time operat-
ing systems can be simulated to observe the full system behavior
for every time step, using the associated tool such as WindView for
VxWorks [5]. Profiling tools are also available for the recent Robotic-
Operating-System [6] used for robotic applications. However, work
remains to be done to interpret this flow of data in real-time and
autonomously, so that supervision of the simulation and reconfigura-
tions are possible. For example, communication based on an Ethernet
network must be robust to packet loss using dead reckoning tech-
niques. Such tools make it possible to verify that the simulation pro-
vides the right output related to the given input only empirically. To
be fully reliable, formal proof should be provided in order to ensure a
deterministic behavior [7].

Another important challenge raised by simulation is to make both the
input data easy to enter in the simulation and the output result useful
for the user. Ideally, the user should not have to understand how the
tool is designed. This necessitates suitable autonomous interpreters
that bridge the gap between the simulation and the user. Moreover,

the simulator should be able to adapt its models to the required output
precision by means of automatic model reduction, for example.

Simulation platforms at ONERA

This paper is aimed at presenting some of the simulation platforms
available at ONERA through some recent or ongoing projects. It is
organized as follows. In the next section, the architecture of the
simulation Platform developed by engineers at ONERA is presented.
Then, we focus on three topics of interest for our current and future
advanced testing developments: interconnection of simulators in a
distributed system, Hardware-In-the-Loop simulation and Human-In-
the-Loop simulation.

Architecture of the simulation Platform

To efficiently design a software architecture understandable by both
business experts and software engineers, it is necessary to develop
a methodology based on a multilayer approach (Figure 1). Indeed,
system studies sometimes require variable granularity models: very
coarse to very fine simulation considering complex physical phenom-
ena. The architecture implementation must be robust to this scaling
problem. This implies the definition of the adequate scope for each
component, as well as for the corresponding interfaces.

In the case of systems and systems of systems, this subdivision can
be performed by functions or by physical architectures. Functional
separation will be preferred for macroscopic levels and technical cut-
ting up for low levels. To facilitate the work, it is helpful to use a pattern
for arranging components in relation to each other. In our case, we
used the SCA paradigm (Sensor / Controller / Actuator) well-known
in the field of automatic control and especially suitable for addressing
engineering systems.

Component-based subdivision of the system

An actor in the simulation, also called agent in some cases, con-
sists of components. A component is a block consisting of a model.

Physical phenomena. e.g.: Gas combustion. T
e
c
h
n
i
c
a
l

S
t
r
a
t
e
g
i
c
a
l

Component (technical models). e.g.: Injector.

Sub-system (function). e.g.: Engine.

System (set of functions). e.g.: Vehicle.

Organisation (set of systems). e.g.: Set of vehicules.

Operational (local contaxt). e.g.: Traffic conurbation.

Strategical (global context). e.g.: Road network of a region.

Figure 1 – Simulation levels of Systems

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 3

The purpose of this component consists in processing input data
(the control u) to provide output data y. For technical components
modeling the dynamics of a physical system, a simplified abstract
representation is given below:

where g is the output function, x is the state and f is a continuous
state function. For functional components, the representation does
not involve time or internal state:

Definition of interfaces

For the communication between the components to be possible, it is
necessary for their interfaces to be compatible. In our approach, an
event mechanism is used. Once a component has finished a job, a
new event is produced as a message and broadcasted directly to com-
ponents that have subscribed to it. Each component is responsible for

its subscription to the messages of interest. An initialization step is
performed before the simulation is launched, to ensure that all of the
communication channels are set up. During the simulation, a callback
is run by a manager responsible for calling the broadcasting function
when it is necessary.

Multi-level compatibility is ensured by a scale effect on each compo-
nent. Indeed, it is possible to divide a component A into sub-compo-
nents {A.1, A.2, ..., A.n}. The interface between a component A and
a component B implies the interfacing between the components {A.1,
A.2, ..., A.n} and B. This means that the inter-component interfaces
should remain the same. However, the intra-component interfaces
can be defined regardless of the outside and may be more specific
or less generic.

Implementation of the simulated system

The architecture presented in Figure 2 is organized around a master
(the SimulationManager), it is able to access all of the players (the
Entity) in the simulation, as well as process them over time. These
players consist of components that can be functional if the time is not
a necessary input data for updating, or technical if a temporal integra-
tion mechanism is needed. Communication between components is
ensured by a specific object (the CommunicationManager) attached to
the master. It is responsible for transmitting messages between play-
ers. In order to manage time in the simulation, a specific component
(the Sequencer) is dedicated to managing the execution sequence.

CommunicationManager SimulationManager

Entity Component

1 1..*

1 1

1

1..*

1

1..*

Sequencer

ComponentFunctional

+ update() : void

ComponentTechnical

+ OnTick(TickMessage) : void

Message

TickMessage

Figure 2 – Architecture of the simulation (class diagram)

u
(input)

y
(output)

t
(time)

(), ,x f t x u=

(), ,y g t x u=

u
(input)

y
(output)()y g u=

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 4

Managing discrete and continuous events

The management of discrete and continuous events is done by send-
ing messages. In the discrete case, a message can be any event sent
punctually that will be processed upon receipt of the message modi-
fying the internal state of the component. In the continuous case, a
time message (TickMessage in Figure 2) is sent at each step of the
simulation. This time message contains the current simulation time
and the time step thereby achieving, for example, an integration of the
component state. Messages are communicated via a callback when it
is necessary. Event-messages are sent instantly. Time messages are
sent at each step (tick) of the simulation. For the purposes of specific
inter-component communication, messages are sent instantly, thereby
making available up-to-date data to meet the needs of each component.

As previously said, the management of simulation is performed by a
master managing the events and the progress of each player and com-
ponent. For specific system needs, a new feature was implemented
to allow each component to work at a different time step. Indeed, in
most systems, sensors, controllers and actuators do not operate at
the same speed. To be more representative of the physical reality, it is
necessary to consider this time constraint in order to ensure that the
system remains stable. For example, guidance and control modules of
an aerospace vehicle do not operate with the same speed. Therefore,
sub-tick management has been implemented in the Sequencer. More-
over, components need to be activated in a right order so that the loop
progresses correctly over time. In our simulator, actuators, then sen-
sors, then controllers are activated successively in the simulation loop.

Interconnected simulation

The interconnection of a simulator with an external tool is quite com-
mon. Often, some processing and even some simulators are third
party tools that cannot be integrated either with the used technologies
or due to the intellectual property. The interconnection is very often
based on a standard of communication so that it can be facilitated.
The standard must be implemented on both sides and can some-
times be expensive, especially when a specific implementation meets
a specific need. Two cases are considered here: a first case address-
ing interoperability between simulations through the use of standard
High-Level-Architecture and a second case dealing with a specific
interoperability with an external tool (which is not a simulator) pro-
cessing data during the simulation.

Distributed simulation

Distributed simulation offers the possibility of playing a simulation on
several remote machines. In order to implement this type of simula-
tion, the High-Level-Architecture (HLA) [8] [9] [10] standard has been
used at ONERA for twenty years [11]. The previously described simu-
lator provides a HLA gateway to map messages to the HLA standard.
This standard describes the objects and shareable messages in a ref-
erence RPR-FOM [12]. The master of the simulation is a Run-Time-
Infrastructure (RTI) that manages time. Messages are timestamped
and a dead-reckoning mechanism allows the Federated actors to have
the right information at time t knowing the information at time (t – dt).

This kind of distributed simulation has been implemented many
times at ONERA. In particular, tests in collaboration with the DGA
(the French department of defense) in the simulation network SimDEx

Defense (see Figure 3). In this experiment, some actors (Federated)
were played at ONERA and the others at the DGA, thereby demon-
strating the feasibility of large-scale simulations involving many
actors (industry, state, etc.).

In this example, interconnection consisted in providing the simulator
with an external tool that is responsible for carrying out the fusion
of data from the simulation. This tool is also involved in the simula-
tion chain, since it may send requests for additional information via an
operator. Therefore, this simulation also deals with the Human-In-the-
Loop problem with this contribution of a human during the simulation.
From the point of view of computer implementation, a specific gateway
has been developed for converting the simulation events into SOAP
messages. These XML SOAP messages are specific to our implemen-
tation. The data fusion tool only reacts to data from the simulation by
processing them according to the current time of receipt. These mes-
sages are timestamped and sent by the simulator. A buffer mechanism
was provided at the gateway for more flexibility in the transmission
of data over the network. A synthetic scheme is proposed below in
Figure 4. Note the specified processing loops representing a process.
It was necessary to create a thread for receiving the simulation data
so that the simulation loop is not blocked. The exchanges are ensured
by two SOAP connections: sending simulator data (uplink) is done by
the server to the client from the external tool; receiving data from the
external tool simulator is done by the client simulator (downlink).

This work has contributed to highlighting the interconnection capac-
ity of the simulator with an external tool. The effort involved is more
important when using a standard communication protocol is not pos-
sible. Preference is given to the use of gateways that can be capital-
ized without creating a strong connection with the simulator. Indeed,
in our case, the gateway converts the simulation messages to SOAP
messages without any useful gains (only a translation is carried out).

Industrial
 Battle-labs

Operational
Systems

DGA

L T O

NATO

C F B L n e t

ONERA

B L A D E

SlmDEX

Figure 3 – HLA distributed simulation in the SimDEx network

Simulator

Engine Gateway

Client

Server

SOAP/XML

SOAP/XML

External treatment

Figure 4 – Example of a specific interconnection

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 5

Hardware components in the simulation loop

The purpose of the Hardware-In-the-Loop (HIL) simulation is to evalu-
ate a real sub-component of an embedded system inside a simulation
of the other components of the system. This method is widely used
for system validation and verification. This is particularly interesting
when the system is very complex and includes many hard compo-
nents (sensors, actuators, controllers, interfaces, etc.). Testing each
component with real experiments could be very expensive, unaccept-
able or even impossible. For example, the control of a vehicle used
under critical conditions requires many tests to ensure its robustness
to every possible scenario, the HIL simulation then offers a cheap,
safe and repeatable method for this purpose.

A HIL simulation is a real-time loop including three main components.
The embedded hardware is the component that needs to be evalu-
ated. This often consists of a controller alone. However, real sensors
and actuators can also be plugged into this controller. In that last
case, another hardware component is necessary to emulate the plant
model. For example, if a vehicle motor and its controller are tested
in a HIL simulation, the motor load needs to be emulated by another
physical component. If a vision-based algorithm is under test includ-
ing the camera, images of the modeled environment need to be gen-
erated [13]. The HIL simulation also includes a real-time computer
implementing the plant model. Eventually, an I/O device is used for
the communication. Indeed, for a complete evaluation of the embed-
ded component, the I/O interface is needed to communicate with the
simulation using the real physical signals that are either feeding an
actuator or generated by a sensor. Such a testing approach is often
used in the design chain of a system controller. The HIL simulation
constitutes the last test before validation with the real physical system
after the other validation steps have been performed, that is, Model-
In-the-Loop (MIL), Software-In-the-Loop (SIL) and Processor-In-the-
Loop (PIL) simulations. Only the HIL and the PIL simulation can be
used to verify that the execution time in the embedded processor fits
within the required time. For PIL simulation, the interface between the
embedded controller and the plant model is ensured by a standard
communication such as Ethernet, while for the HIL simulation, the

plant model is implemented on a hard real time computer, so that full
real time simulation can be performed.

When a full complex system, such as the aerospace systems
encountered at ONERA (missile systems for example), cannot be
physically built and tested, PIL and HIL simulations offer a way for
experimenting new algorithms in real time and under real conditions.
Using this approach, the next section presents the experimentation of
an advanced navigation and guidance algorithm currently being done
in the DCPS department at ONERA.

Experiments of embedded advanced GNC algorithms in a HIL simulation

Experiments on advanced navigation and guidance algorithms are
currently conducted in the DCPS department using the presented
approach to demonstrate their performance in a realistic complex
scenario.

The problem considered consists of both an interceptor missile and
a cruise missile. The goal of the interceptor is to intercept the pos-
sibly maneuvering target (Figure 6). A ground station involving a radar
detects the target and sends a predicted intercept point [14] to the

Simulation platform

Embedded processor

Measurements
Control
Estimated
state

Figure 5 – Presentation of a HIL Simulation

Figure 6 – Presentation of the intercept scenario

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 6

interceptor so that it can ensure the rendezvous. For this scenario,
a controller is embedded in the interceptor for the midcourse guid-
ance [15] and a second controller is embedded in the cruise missile
for navigation [16]. A short video presenting this project is available
at the following URL: http://www.aerospacelab-journal.org/sites/
aerospacelab.onecert.fr/files/playlists/al12-15-video1.flv

The computing consumption of classical algorithms used in most aero-
space systems is low. Indeed, these algorithms often rely on analytical
equations that can be computed very fast. Thus, cheap and low-power
embedded processors are sufficient to ensure real time performance.
Such classical algorithms are not satisfactory for complex missions
involving navigation without GPS or optimal guidance, as considered
here. Thus, advanced algorithms to address such problems have been
developed. For the navigation of the cruise missile, specific particle fil-
ters were designed [16] [17] and for midcourse guidance of the inter-
ceptor, an indirect shooting method was designed [15]. These two
algorithms are computationally demanding, since the first relies on the
Monte-Carlo method and the second relies on iterative Newton meth-
ods [18]. Good performance is demonstrated in simulation results.

However, it remains to be shown that these techniques can be embed-
ded with the same level of performance, that is, real time capabilities
need to be verified on an embedded processor.

To this end, a PIL simulation has been carried out: Figure 7 briefly pres-
ents the architecture of the simulation. A computer ensures the simula-
tion of the system consisting of three main components: the intercep-
tor component, the cruise missile component and the ground station
component. The interceptor includes a subcomponent that ensures
the computation of the control and the target component includes a
subcomponent for navigation. Two modes are available: a full MIL
simulated mode (control and navigation are modeled) and a PIL mode
(control and navigation are ensured by embedded processors). For
the PIL mode, the subcomponents directly transmit input data to the
embedded processor through an Ethernet interface and the output data
are acquired using the same interface. The processors that are used
here are two Cyclone V SoC Development Kits from Altera that allow
computing acceleration using the integrated FPGA [19]. Since the
interface between the simulation and the embedded processors does
not emulate real signals yet, this simulation is not fully HIL. However,
as a first step, the PIL simulation is sufficient to verify that the proces-
sors can compute output data within the required time.

The proposed simulation loop offers a tool that allows the team to
experiment new algorithms in realistic situations, so that the practical
feasibility of our algorithms can be demonstrated. However, critical
aerospace applications demand a safe and deterministic behavior.
Therefore, to increase the TRL of our novel algorithms, a formal veri-
fication of the developed software may be required [20]. For instance,
some advanced algorithms developed at ONERA rely on optimization
methods, such as the Newton method or the interior point method
[21]. A formal analysis of such methods needs to verify that a given
precision can be achieved for a given number of iterations. These
deterministic properties are necessary to ensure that the imple-
mented algorithms can be qualified and transferred to industry. Future
work will concentrate on these important issues.

ETHERNET INTERFACE

Interceptor embedded processor

Control Estimated state HARDWARE

Target embedded processor

Estimated state and PIP

Interceptor component

Guidance component

Sensor data

Cruise Missile component

Navigation component

SIMULATION

Target stateGround Station component
Predicted
Intercept
Point (PIP)

Figure 7 – Architecture of the PIL simulation

Video 1 – Hardware-In-the-Loop simulation for missile interception

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 7

Human-in-the-loop simulation

When a Human interacts with the simulation, the simulation is called
Human-In-the-Loop. Such simulations can be used for training, for
example (flight simulators for pilot training), or to assist in the design
of virtual objects by creating a simulated environment. Human-In-
the-Loop simulation has been a focus of many research projects
[22] [23] [24]. These projects generally consider how automation
and humans can work together or in a joint environment. However,
testing these algorithms and setting up experiments is often diffi-
cult, mainly due to lack of realistic simulations. Quantifying simula-
tion fidelity, using an engineering metrics approach, underpins the
confidence in the successful completion of the conception-design-
build-test/qualification-production-operation cycle of aircraft, yet has
been neglected in the aeronautical world. For fixed wing aircraft, the
concept of zero flight time training using flight simulation is accepted
and deemed necessary from a safety and cost standpoint. This must
become the modus operandi for rotorcraft training. Simulators are
commonly used to assess handling qualities and to develop crew-
station technologies. Attempts to quantify overall simulation fidelity
within the framework of handling quality engineering have been pre-
sented in a number of forms in recent years. In [25] [26] [27], an
approach based on pilot-aircraft modeling has been developed and
the handling quality sensitivity function was introduced as the basis of
a quality metric. In [28] and later in [29] the use of the handling quality
standard (ADS-33E PRF 22) was proposed, for deriving metrics, the
rationale here being that if the simulator is to be used to optimize han-
dling qualities, then what better parameters to judge fidelity than those
defining the predicted handling. In [30] and [31], an approach using
comparative measures of performance and control activity, correlated
with handling quality ratings given for the same tasks when flown in
simulation and in flight, was presented. In all of these approaches,
the philosophy has been to try to develop a rational and systematic
approach to the identification of the differences between simulation
and flight, hence directing attention towards areas of deficiency. The
partial success of these methods is encouraging, but only serves to
highlight the need for fidelity criteria for use in design, development
and product qualification. In these areas, flight simulation can be a
primary source of data from which knowledge is derived, decisions
are made and significant resources are committed; similar arguments
can be made for the development of flight training.

A Human-In-the-Loop project at ONERA

An assessment methodology for human-in-the-loop simulation is
under development at ONERA, using available experimental platforms
(Figure 8) that addresses the Spatial Disorientation (SD) phenomenon,
where pilots experience erroneous sensations about their orientation.
One situation in which SD can occur is the go-around procedure. In
some circumstances, go-around can lead to a somatogravic (i.e.,
vestibular) illusion (also termed false-climb) prevalent during high
accelerations (or decelerations) when a pilot has no clear visual refer-
ence [32]. The "illusion" is a strong pitching sensation up (or down)
when the body is exposed to high accelerations (or decelerations)
[33]. This illusion is due to the limitation of the vestibular system,
which detects changes in orientation without differentiating between
head tilt backward and forward acceleration.

How to optimally simulate self-motion using motion simulators is still
an unsolved problem, despite the fact that self-motion simulation is an
essential part of all commercial flight and driving simulators. Flight simu-
lators used for pilot training and also most driving simulators strive to
simulate motion trajectories that are considerably larger than the actual
range of the physical simulator device. To do this, motion cueing algo-
rithms attempt to mimic the accelerations that act on the body during
self-motion. While a larger range of movement allows for more accurate
motion cueing, increasing the number of degrees of freedom and enlarg-
ing the movement range of the simulator raises the costs of the device
considerably, and there are also technical limits to what kind of trajec-
tories can be performed in a simulator due to the limited motion enve-
lope and actuator power. It is therefore important to find techniques to
believably simulate large trajectories using smaller movements that are
within the limited movement range of the simulator. Presenting believable
physical accelerations is an issue for psychophysical experiments that
investigate the perception of self-motion in motion simulators.

Conclusion and perspectives

In this paper, the state of the ONERA’s simulation developments
was presented. A component-based approach has been adopted to
enable researchers and engineers to integrate their system develop-
ments as easily as possible into a common and stable software. For

Prototyping means for
human-system interaction

Civilian and military
operations

Hybrid
simulation

with aircraft,
RPAS & Robot

Methods and analytical tools
Modeling human activity
and cognitive functions

Characterization of
cognitive states

Acquisition of
behavioral and

physiological data

Innovative
interaction concepts

Prototyping and
evaluation in piloted

simulations

Figure 8 – Some experimental means available at ONERA

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 8

researchers, this offers the possibility of increasing the maturity of
their innovative solutions using a very flexible simulation tool. More-
over, thanks to the modularity of the simulator, the accomplishment
of multidisciplinary projects is facilitated for system engineers. In
particular, the simulation platform includes hybrid simulation involv-
ing humans and real components. This allows the gap between pure
simulation and real experiments to be bridged.

Future work will consist in feeding innovative technologies into the
hybrid simulation platforms at Onera, so that complex future sys-
tems can be designed and tested efficiently. Thus, the simulation
platform will constitute a wonderful tool to demonstrate proof of
concepts for future systems and to facilitate transfer of technology.
For example, using all Onera technologies integrated into a simula-
tion platform, future complex systems such as Reusable Launch
Vehicles could be fully simulated and validated, including aerody-
namic phenomena, navigation, guidance and control, specific sen-
sors and actuators, etc.

Moreover, scientifically challenging problems still need to be explored,
especially with regard to the management of simulation uncertainties:
how can errors and inconsistencies be detected, and how can they
be managed autonomously? Furthermore, the question of choosing
the right granularity of models with respect to the assessed output
remains open: both the real-time property and the output consistency
need to be ensured at the same time. From a technical point of view, the
simulation engine has to be improved to deal with studies that require
very high precisions. The current engine is compliant with technical-
operational studies, but for other studies improvements must be made
in the numerical analysis domain. The Discrete Event System Specifi-
cation (DEVS) is a formalism especially designed for the modeling and
analysis of discrete event systems, as well as continuous state sys-
tems [34]. The idea is to manage the precision required by the experts
in a transparent way. The engine will perform a fully integrated control
of the time and of the events, in order to achieve the goal defined by
the experts at the beginning of the experiment. 

Acronyms

TRL (Technology Readiness Level)
HLA (High Level Architecture)
SD (Spatial Disorientation)
HIL (Hardware-In-the-Loop)
PIL (Processor-In-the-Loop)
SIL (Software-In-the-Loop)
MIL (Model-In-the-Loop)
DCPS (System Design and Performance Evaluation Department)

References

[1] P. CARLE et al. - Simulation of Systems of Systems. AersopaceLab Journal, 2012.
[2] R. CUISINIER, M. BRUNEL, and S. PRUDHOMME - Using Open Source to Build Comprehensive Battlespace Simulations. Proc. of SimTecT, 2010.
[3] https://fr.mathworks.com/products/simulink/.
[4] http://www.ni.com/labview/.
[5] http://www.windriver.com/products/vxworks/.
[6] http://www.ros.org/.
[7] E. CLARKE, D. KROENING, and F. LERDA - A Tool for Checking ANSI-C Programs. International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, March 2004, 168-176.
[8] J.S. DAHMANN - The High Level Architecture and Beyond: Technology Challenges. Proceedings of the Thirteenth Workshop on Parallel and Distributed

Simulation, 1999, 64-70.
[9] IEEE 1516-2010. Standard for Modeling and Simulation High Level Architecture - Framework and Rules.
[10] IEEE 1516.1-2010. Standard for Modeling and Simulation High Level Architecture - Federate Interface Specification.
[11] J. BOURRELy, P. CARLE, M. BARAT, and F. LéVy - Genesis: an Integrated Platform for Designing and Developing HLA applications. Proc. of Simulation

Interoperability Workshop, 2005.
[12] IEEE 1516.2-2010. Standard for Modeling and Simulation High Level Architecture - Object Model Template (OMT) Specification.
[13] N.R. GANS, W.E. DIXON, R. LIND, and A. KURDILA - A Hardware in the Loop Simulation Platform for Vision-Based Control of Unmanned Air Vehicles,

Mechatronics. vol. 19, 2009, 1043–1056.
[14] P. PHARPATARA, R. PEPy, B. HéRISSé, and y. BESTAOUI - Missile Trajectory Shaping Using Sampling-based Path Planning. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2013.
[15] R. BONALLI, B. HéRISSé, and E. TRéLAT - Analytical Initialization of a Continuation-Based Indirect Method for Optimal Control of Endo-Atmospheric

Launch Vehicle Systems. IFAC World Congress, vol. to appear, 2017.
[16] A. MURANGIRA, C. MUSSO, K. DAHIA, and J.-M. ALLARD - Robust Regularized Particle Filter for Terrain Navigation. IEEE International Conference on

Information Fusion (FUSION), 2011.
[17] N. MERLINGE, K. DAHIA, and H. PIET-LAHANIER - A Box Regularized Particle Filter for Terrain Navigation with Highly Non-Linear Measurements. IFAC

Symposium on Automatic Control in Aerospace, 2016.
[18] E. TRéLAT - Optimal Control and Applications to Aerospace: Some Results and Challenges. Journal of Optimization Theory and Applications, vol. 154,

2012, 713–758.

Issue 12 - December 2016 - Component-based simulation for real-time experiments
 AL12-15 9

[19] https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-soc.html.
[20] V. WIELS et al. - Formal Verification of Critical Aerospace Software. (4), p-1., AerospaceLab, 2012.
[21] J.F. BONNANS, J.C. GILBERT, C. LEMARéCHAL, and C.A. SAGASTIzáBAL - Numerical Optimization: Theoretical and Practical Aspects. Springer Science

& Business Media, Ed., 2013.
[22] G.D. PADFIELD et al. - Simulation Fidelity of Real-Time Helicopter Simulation Models. 61st Annual Forum of the American Helicopter Society, 2005.
[23] S.J. HODGE, J.S. FORREST, G.D. PADFIELD, and M.D. WHITE - Determining Fidelity Standards for Maritime Rotorcraft Simulation. Maritime Operations

of Rotorcraft. London: The Royal Aeronautical Society, 2008.
[24] V. SHIA et al. - Semiautonomous Vehicular Control Using Driver Modeling. IEEE Transactions on Intelligent Transportation Systems, 2014, 1-14.
[25] R.A. HESS - Identification of Pilot-Vehicle Dynamics from Simulation and Flight Test. Advances in Aerospace Systems Dynamics, vol. 31, 1990, 151-175.
[26] R.A. HESS and T. MALSBURy - A Methodology for the Assessment of Manned Flight Simulator Fidelity. Journal of Guidance, Control and Dynamics,

vol. 14, 1991, 191-197.
[27] R.A. HESS and W. SIWAKOSIT - Assessment of Flight Simulator Fidelity in Multiaxis Tasks Including Visual Cue Quality. Journal of Aircraft, vol. 38, no.

4, 2001, 607-614.
[28] G.D. PADFIELD, M.T. CHARLTON, and A.T. MCCALLUM - The Fidelity of Hi-Fi Lynx on the DERA Advanced Flight Simulator Using ADS-33 Handling

Qualities Metrics. DRA/AS/FDS/TR96103/1, 1996, 1-152.
[29] A.T. MCCALLUM and M.T. CHARLTON - Structured Approach to Helicopter Simulator Acceptance,The Challenge of Realistic Rotorcraft Simulation.

RAeS conference, 2001.
[30] S.K. ADVANI and C.H. WILKINSON - Dynamic Interface Modelling and Simulation-a Unique Challenge. Society Conference on Helicopter Flight

Simulation, 2001.
[31] M.F. ROSCOE and J.H. THOMPSON - JSHIP’s Dynamic Interface Modeling and Simulationsystem: a Simulation of the UH-60A Helicopter/LHA shipboard

Environment Task. 59th Annual Forum of the American Helicopter Society, 2003.
[32] T. WILSON - Aircraft Human Performance & Limitations. Civil Aviation Safety Authority, 1995.
[33] A.T KERN - Flight Discipline. McGraw Hill Professional, 1998.
[34] B.P. zEIGLER, H. PRAEHOFER, and T.G. KIM - Theory of Modelling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic

Systems. Academic Press, Ed. London, 2000.

AUTHORS

Bruno Hérissé received the Engineering degree and the Master
degree in 2007 from the École Supérieure d'Électricité
(Supélec). He obtained the Ph.D. degree from the University of
Nice Sophia Antipolis in 2010. Since 2011, he has been a
research engineer at ONERA, Palaiseau, France. His research

interests include optimal control and vision-based control of aerial vehicles.

Gyslain Hervieux has been a research engineer in computer
science at ONERA since 2006. He received his Engineering
degree from "Ecole Nationale Supérieure d’Arts et Métiers"
(ENSAM 2002) and his Advanced Master in Simulation and
Virtual Reality from "Institut Image of Chalon sur Saône"

(2006). His research interest is focused on computer simulation and on
computer graphics.

Karim Dahia is a senior navigation engineer with the ONERA
French Aerospace Lab in Palaiseau, France. His Ph.D. from the
Université Joseph Fourier – Grenoble (France) focused on the
application of particle filtering to aircraft motion estimation.
Dr. Dahia’s research interests include robust and optimal

navigation as well as filtering for aerospace systems.

Jean-Michel Allard received his Engineering degree from the
"Ecole Nationale Supérieure d’Arts et Métiers" (ENSAM 1996)
and the "Ecole Supérieure des Techniques Aérospatiales"
(ESTA 1997). He has been working at ONERA since 2001 as a
research engineer for the System Design and Performance

Evaluation Department (DCPS). His research interest is focused on inertial
measurements hybridization and simulation for navigation of aircraft. He is
carrying out expertises to the benefit of military programs managed by the
Direction Générale de l’Armement (DGA) of the Ministry of Defence.

Jean-Christophe Sarrazin is currently Senior Research
Scientist at ONERA. He received his PhD in 2003 in Health and
Life Sciences from the University of the Mediterranean
(Marseille, France). After two postdocs in computational
neuroscience (postdoc INRIA, Nancy, France, one year) and

cognitive neuroscience (postdoc Marie Curie, Université Libre de Bruxelles,
two years) respectively, he obtained a permanent position at ONERA. In the
Information Processing and System Branch, in which he coordinates the
Human System Integration Team, he is a neuroergonomist and works on the
scientific and technical development of human system integration studies. He
works on the identification and the modelling of the computational principles
of motor control and its modulation by high level cognitive functions. As he
considers that a key to the development of HMI technologies lies in the
integration of the neurosciences by industrials, he oeuvres at ONERA for the
acquisition of neuroscientific knowledge and methods of investigation,
specifying simulation scenarios, and the use of this newly found knowledge
in improving design methods of new concepts of interaction.

