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Abstract

In this paper we develop a geometric analysis and a numerical method based on indirect methods

to solve optimal control problems concerning endo-atmospheric launch vehicle systems. Two main

difficulties are addressed. First, the usual approach to restate given mixed control-state constraints as

pure control constraints consists in describing the endo-atmospheric flight dynamical model via Euler

coordinates which have singularities, and this prevents from solving all reachable configurations. We

propose a representation of the configuration manifold with two local charts, in each of which the

problem can both be settled in a simpler form and be solved without running into coordinate singularities.

Moreover, we prove that no singular arcs arise. The second issue concerns the hard initialization of the

indirect method. We introduce a strategy which combines the related shooting method with homotopies,

thus providing a high accuracy. For the missile interception problem, our numerical simulations confirm

the efficiency of the approach.

Index Terms

Geometric optimal control, Indirect methods, Numerical homotopy methods, Guidance of vehicles.

R. Bonalli is with Onera - The French Aerospace Lab, F-91761 Palaiseau, France, e-mail: riccardo.bonalli@onera.fr
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I. INTRODUCTION

A. Optimal Guidance of Launch Vehicle Systems

Guidance of autonomous launch vehicles towards rendezvous points is a complex task often

considered in aerospace applications. It can be modeled as an optimal control problem, with the

objective of finding a control law enabling the vehicle to join a final point considering prescribed

constraints as well as performance criteria. The rendezvous point may be a static point as well

as a moving point if, for example, the mission consists in reaching a maneuvering target. Then,

an important challenge consists in developing analysis and algorithms able to provide high

numerical precision of optimal trajectories, considering rough onboard processors, that is with

low computational capability.

In the engineering community, one of the most widespread approaches to solve this kind of

task resides on analytical guidance laws (see, e.g. [25], [26], [37], [29], [22]). They correct

errors coming from perturbations and misreading of the system. Nonetheless, the trajectories

induced by guidance laws are usually not optimal because of some considered approximations.

On the other hand, ensuring the optimality of trajectories can be achieved rather exploiting

direct methods (see, e.g. [19], [35], [36], [31], [39]). These techniques consist in discretizing

each component of the optimal control problem (the state, the control, etc.) to reduce it to a

nonlinear constrained optimization problem. A high degree of robustness is provided while, in

general, no deep knowledge of the dynamical system is required, making these methods rather

easy to use in practice. However, their efficiency is proportional to the computational load which

often obliges to use them offline.

Good candidates to manage efficiently an onboard processing of optimal trajectories are

indirect methods (see, e.g. [10], [11], [27], [30], [32]). Necessary conditions coming from the

Pontryagin Maximum Principle (PMP) (see [33], [24]) wrap the optimal guidance system into a

two-point boundary value problem, leading to accurate and fast algorithms. The advantages of

indirect methods, whose more basic version is known as shooting method, are their extremely

good numerical accuracy and the fact that, if they converge, the convergence is very quick.

Nevertheless, treating mixed control-state constraints with necessary conditions and initializing

indirect methods still remain challenging.
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B. Mixed Control-State Constraints and Euler Singularities

An accurate study of the optimal guidance of launch vehicles compels to consider both usually

demanding performance criteria and possible onerous missions to accomplish. Since, in this

situation, the vehicle is subject to several strong mechanical strains, some stability constraints

must be imposed, which turn out to be modeled as mixed control-state constraints. This kind of

optimal control problems is more difficult to treat by the Maximum Principle (see, e.g. [8], [20],

[15], [13]). Indeed, further Lagrange multipliers appear, for which, obtaining rigorous and useful

information may be arduous and has been the object of many studies in the existing literature

(see, e.g. [23], [28], [7], [6], [2]).

A widespread approach in aeronautics to avoid to deal with these particular mixed control-

state constraints consists in reformulating the original guidance problem using some local Euler

coordinates, under which, the structural constraints become pure control constraints (see for

example [7], [34]; we report this change of coordinates in Section III-B). The transformation

allows to consider the standard Maximum Principle and, then, usual shooting methods. However,

Euler coordinates are not global and have singularities that prevent from solving all reachable

configurations, reducing the number of possible achievable missions.

We fix this issue by reformulating the optimal guidance problem within an intrinsic viewpoint,

using geometric control (and it does not seem that this general framework has been systematically

investigated in the optimal guidance context so far). In particular, we build additional local

coordinates which cover the singularities of the previous ones and under which the mixed control-

state constraints can be still reinterpreted as pure control constraints. Moreover, these two sets

of local coordinates form an atlas of the configuration manifold and can be exploited to recover

completely the behavior of optimal controls even if there are some singular arcs.

We stress on the fact that the introduction of these particular local coordinates provides, in

turn, two main benefits. On one hand, there is no limit on the feasible mission scenarios that

can be simulated, and, on the other hand, the optimal guidance problem is not conditioned

by multipliers depending on mixed constraints (or, at least, locally), then, standard shooting or

multi-shooting methods can be easily put in practice. This is at the price of changing chart

(local coordinates), which complicates a bit the implementation of the shooting method, but,

importantly, does not affect its efficiency.
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C. Our Numerical Approach and Applications

The main advantage of indirect methods is their extremely good numerical accuracy. Indeed,

since they rely on the Newton method, they inherit of the very quick convergence properties

of the Newton method. Nevertheless, it is known that their main drawback is related to their

initialization. This issue can be addressed by homotopy methods (we refer to [1] for classical

frameworks).

The basic idea of homotopy methods is to solve a difficult problem step by step starting from

a simpler problem (that we call problem of order zero) by parameter deformation. Combined

with the shooting problem derived from the Maximum Principle, a homotopy method consists in

deforming the problem into a simpler one (which can be easily solved) and then solving a series

of shooting problems step by step to come back to the original problem. In the case in which

the homotopic parameter is a real number and when the path consists in a convex combination

of the problem of order zero and of the original problem, the homotopy method is rather called

a continuation method.

Homotopy procedures have proved to be reliable and robust for problems in the aerospace

context like orbit transfer, atmospheric reentry and planar tilting maneuvers (see, e.g. [12], [18],

[40], [41]). Here, we propose a numerical homotopy scheme to solve the shooting problem

coming from the optimal guidance framework, ensuring a high numerical accuracy of optimal

trajectories.

In order to practically apply this homotopy algorithm, we give numerical solutions of the endo-

atmospheric missile interception problem (presented, for example, in [14]). We are able to provide

a problem of order zero which is a good candidate to initialize the first homotopic iterations.

Then, we can recover the optimal solution of the original problem by a linear continuation

method, ensuring the convergence of the whole algorithm.

D. Structure of the Paper

The paper is organized as follows. Section II contains details on the model under consideration

and the optimal problem statement. Sections III-A, III-B and III-D are devoted repectively to the

Maximum Principle formulation, its intrinsic geometric behavior analysis and the computations

of the optimal controls as functions of the state and the costate. Singular controls are analyzed

too. In Sections IV and V we provide the numerical scheme, giving a complete numerical solution
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of the endo-atmospheric missile interception problem. Finally, Section VI contains conclusions

and perspectives.

II. OPTIMAL GUIDANCE PROBLEM

A. Model Dynamics

We focus on a class of launch vehicles modeled as a three-dimensional axial symmetric

cylinder, where u denotes its principal body axis, steered by a control system (based on steering

fins or a Reaction Control System for example). We denote by Q the point of the vehicle

where this system is placed. Let O be the center of the Earth, K be the northsouth axis of the

planet and consider an orthonormal inertial frame (I,J ,K) centered at O. For the applications

presented, the effect of the rotation of the Earth can be neglected. The motion of the vehicle,

denoting with G its center of mass, is described by the state variables (r(t),v(t),u(t)), where

r(t) = x(t)I + y(t)J + z(t)K is the trajectory of G while v(t) = ẋ(t)I + ẏ(t)J + ż(t)K is its

velocity.

We denote by P the center of pressure, by m the mass of the vehicle, by ρ(r) the air density

(a standard exponential law of type ρ0 exp(−(‖r‖ − rT )/hr) is considered, where ρ0 > 0, rT is

the radius of the Earth and hr is a reference altitude) and by S a constant reference surface for

aerodynamical forces. Then, the forces and torques applied to the vehicle are:

• the gravity g = −g(r) r
‖r‖ , acting at G;

• the drag D = −1
2
ρ(r)SCD‖v‖v, acting at P , where CD = CD0 +CD1

(
‖u∧v‖
‖v‖

)2
is a quadratic

approximation of the drag coefficient (CD0 , CD1 are positive constants);

• the lift L = 1
2
ρ(r)SCLα

(
v ∧ (u∧v)

)
, acting at P , where the coefficient CLα is considered

constant;

• the thrust T = fT (t)u, acting at Q, where fT (t) is nonnegative and proportional to the

mass flow q(t);

• the skid-to-turn force W , acting at Q, which includes the aerodynamical contribution due

to the control system;

• the overturning torque M = 1
2
ρ(r)SCL‖v‖v∧GP‖GP‖ which includes the turning components

of drag and lift.
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Structural optimization ensures that torques do not affect the dynamics of the momentum. As

a standard result (see, e.g. [34]), the following rigid body dynamics is obtained

ṙ(t) = v(t) ,
d

dt
(IGω)(t) = −ω(t) ∧ IG(t)ω(t) +

W ∧GQ
‖GQ‖

+M

v̇(t) = f(t, r(t),v(t),u(t)) :=

T (t,u(t))

m(t)
+ g(r(t)) +

D(r(t),v(t),u(t))

m(t)
+
L(r(t),v(t),u(t))

m(t)

(1)

where IG(t) denotes the inertial matrix of the vehicle at G while ω(t) denotes its angular velocity

in body axis at time t. Since the evolution of the mass flow q(t) is known a priori, the evolutions

of IG(t) and m(t) are known as well.

Remark 1: The principal body axis u is a function of the angular velocity ω. Moreover, some

stability constraints naturally appear. In particular, the velocity is always positively oriented w.r.t.

the principal body axis and, to stabilize the vehicle, it is recommended to force the velocity

v(t) such that its values are inside a cone around the body axis u(t), of maximal amplitude

0 < αmax ≤ π/6 (αmax is the maximal angle of attack). In this paper, we do not consider

structural limits such as the load factor. It is not difficult to extend our results if these limits

are considerd (following Section IV).

At this stage, (1) represents a control system on which one can act on W . More specifically,

system (1) means the dynamics of a guidance and control of launch vehicle systems problem.

B. General Optimal Guidance Problem

In practical applications, rotational dynamics are faster than traslational dynamics. Then, it is

more convenient to divide and treat separately respectively the guidance system and the control

system.

The computation of an optimal strategy concerns the guidance system only. Then, we can

simplify system (1) into

ṙ(t) = v(t) , v̇(t) = f(t, r(t),v(t),u(t))

(r(t),v(t)) ∈ N , u(t) ∈ S2 , (r(T ),v(T )) ∈M ⊆ N

c1(v(t),u(t)) := −v(t) · u(t) ≤ 0 , r(0) = r0 , v(0) = v0

c2(v(t),u(t)) :=

(
‖u(t)∧v(t)‖
‖v(t)‖ sinαmax

)2

− 1 ≤ 0

(2)
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where N is an open subset of R6 \ {0} consisting of all possible scenarios (see Remark 2 in

Section III-B), (r0,v0) ∈ N are given intial values, M is a subset of N and, now, the control

variable becomes the principal body axis u.

In this general context, a mission depends on which kind of launch vehicle we treat and which

specific task it has to accomplish. Then, for the moment, we do not make precise neither the cost

nor the set M of final conditions, saying that our General Optimal Guidance Problem (GOGP)

consists in minimizing the cost function

CT (r(·),v(·),u(·)) = g(T, r(T ),v(T ))

under the dynamical control system (2), where g is of class C1 and the final time T may be free

or not. Nevertheless, the computations of the optimal control using an indirect method framework

cannot be totally accomplished (see Section III-D) unless considering further assumptions on g

and M . In particular we suppose the following:

Assumption 1: The set M is a submanifold of N and satisfies at least one between the following

two conditions:

A) The final time T is free and
∂g

∂t
(T, r,v) 6= 0;

B) It holds M =
{

(r,v) ∈ N : F (r,v) = 0
}

, where F is a smooth submersion. Moreover,

for every local chart (x1, . . . , x6)(r,v) of N , there always exists a free final variable, let

say xi, such that ∂g
∂xi

(T, r,v) 6= 0.

III. MAXIMUM PRINCIPLE AND OPTIMAL SYNTHESIS IN THE TWO CHARTS

A. Maximum Principle for Mixed Control-State Constraints

In (2) we have two mixed control-state constraints c1 and c2. Let (r(·),v(·),u(·)) be optimal

for (GOGP), with final time T . Since c2(v,u) forces c1(v,u) to be negative, we take into

account only the following strong regularity assumption

rank
(
∂u1c2 ∂u2c2 ∂u3c2

)
(v,u) = 1

for points such that c2(v,u) ≥ 0, which is always satisfied. We denote p = (p1,p2) ∈ R3 ×R3

and define by

H(t, r,v,p, µ1, µ2,u) = H0(t, r,v,p,u) + µ1c1(v,u) + µ2c2(v,u) (3)

= 〈p1,v〉+ 〈p2,f(t, r,v,u)〉+ µ1c1(v,u) + µ2c2(v,u)

October 30, 2017 DRAFT



8

the Hamiltonian of (GOGP). According to the Maximum Principle (see, e.g. [33], [21]), there ex-

ist, under appropriate identifications, a non-positive scalar p0, an absolutely continuous mapping

p : [0, T ] → T ∗N ' R6 called adjoint vector and functions µ1(·), µ2(·) ∈ L∞([0, T ],R), with

(p(·), p0) 6= 0, such that the so-called extremal (r(·),v(·),p(·), p0, µ1(·), µ2(·),u(·)) satisfies a.e.

in [0, T ]:

• Adjoint Equations

 ṙ(t)

v̇(t)

 =
∂H

∂p
(t, r(t),v(t),p(t), µ1(t), µ2(t),u(t))

ṗ(t) = − ∂H

∂(r,v)
(t, r(t),v(t),p(t), µ1(t), µ2(t),u(t))

(4)

• Maximality Conditions

H0(t, r(t),v(t),p(t),u(t)) ≥ H0(t, r(t),v(t),p(t),u) (5)

for every u such that: u ∈ S2 , c1(v(t),u) ≤ 0 , c2(v(t),u) ≤ 0

∂H

∂u
(t, r(t),v(t),p(t), µ1(t), µ2(t),u(t)) = 0 (6)

• Complementarity Slackness Conditionsµ1(t)c1(v(t),u(t)) = 0

µ2(t)c2(v(t),u(t)) = 0
, µ1(t) ≤ 0 , µ2(t) ≤ 0 (7)

• Transversality Conditions

p(T )− p0 ∂g

∂(r,v)
(T, r(T ),v(T )) ⊥ T(r(T ),v(T ))M (8)

Moreover, if the final time T is free, then

max
u

H0(T, r(T ),v(T ),p(T ),u) = −p0∂g
∂t

(T, r(T ),v(T )) (9)

and the max is taken on: u ∈ S2 , c1(v(T ),u) ≤ 0 , c2(v(T ),u) ≤ 0

The extremal is said normal if p0 6= 0 and, in this case, it is usual to set p0 = −1. Otherwise, the

extremal is said abnormal. As we pointed out previously, obtaining rigorous and useful infor-

mation on the multipliers µ1(·), µ2(·) may be difficult, which consequently makes challenging

applying indirect methods.

In this situation, a change of coordinates, which is commonly used in aerospace applications,

can be performed to transform the mixed control-state constraints c1 and c2 into pure control
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constraints, allowing to use standard shooting methods. However, this transformation acts only

locally, preventing from representing the whole configuration manifold N . For sake of clarity,

we first recall this standard transformation, and then, we show how to fix the presence of Euler

singularities by introducing further coordinates, in which, c1 and c2 still become pure control

constraints.

B. Local Model with Respect to Two Charts

1) Reduction to Pure Control Constraints via Local Coordinates: We denote by (r, L, `) the

spherical coordinates of the center of mass G of the vehicle w.r.t. (I,J ,K), where r is the

distance OG, L the latitude and ` the longitude. We denote (eL, e`, er) the North-East-Down

(NED) frame, a moving frame centered at G, where −er is the local vertical direction, (eL, e`)

is the local horizontal plane while eL is pointing to the North. By definition
eL = − sin(L) cos(`)I − sin(L) sin(`)J + cos(L)K

e` = − sin(`)I + cos(`)J

er = − cos(L) cos(`)I − cos(L) sin(`)J − sin(L)K

for which r = −rer and it is straightforward to have

ėL = − ˙̀ sin(L)e` + L̇er , ė` = ˙̀ sin(L)eL + ˙̀cos(L)er (10)

ėr = −L̇eL − ˙̀ cos(L)e`

Then, the transformation from the frame (I,J ,K) to the frame (eL, e`, er) is

R(L, `) :=


− sin(L) cos(`) − sin(L) sin(`) cos(L)

− sin(`) cos(`) 0

− cos(L) cos(`) − cos(L) sin(`) − sin(L)

 ∈ SO(3)

Fig. 1. Frame (i1, j1,k1).

To obtain c1 and c2 as pure control constraints, further

coordinates for the velocity must be introduced. Using

the classical formulation in the azimuth/path angle

coordinates (see, e.g. [7]), we introduce the first velocity

frame (i1, j1,k1):
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i1 :=

v

v
= cos(γ) cos(χ)eL + cos(γ) sin(χ)e` − sin(γ)er

j1 := − sin(γ) cos(χ)eL − sin(γ) sin(χ)e` − cos(γ)er

k1 := − sin(χ)eL + cos(χ)e`

(11)

where v = ‖v‖. The rotation from the frame (eL, e`, er) to the frame (i1, j1,k1) is then

Ra(γ, χ) =


cos(γ) cos(χ) cos(γ) sin(χ) − sin(γ)

− sin(γ) cos(χ) − sin(γ) sin(χ) − cos(γ)

− sin(χ) cos(χ) 0

 ∈ SO(3)

It is important to note that (r, L, `, v, γ, χ) represent local coordinates for the dynamics of

(GOGP) i.e., there exists a local chart of R6\{0} whose coordinates are exactly (r, L, `, v, γ, χ).

Indeed, denote U =
[
(0,∞)×

(
−π

2
, π
2

)
×(−π, π)

]2
and define the mapping ϕ−1a : U −→ R6\{0}

such that

ϕ−1a (r, L, `, v, γ, χ) =

(
r cos(L) cos(`), r cos(L) sin(`), (12)

r sin(L), RT (L, `) ·RT
a (γ, χ)


v

0

0


)

this mapping is an injective embedding, hence its inverse is a local chart (in the sense of differ-

ential geometry) with respect to Ua := ϕ−1a (U) which is an open subset of R6 \ {0}. Exploiting

(10) and the definition of (i1, j1,k1), in the coordinates provided by (12), the derivative of v is

v̇ = v̇i1 +

(
vγ̇ − v2

r
cos(γ)

)
j1+ (13)(

v cos(γ)χ̇− v2

r
cos2(γ) sin(χ) tan(L)

)
k1 .

As a final step, we introduce new control variables (which are functions of the original control

u), under which, c1 and c2 can be reformulated as pure control constraints. For this, define the

new control w = Ra(γ, χ) ·R(L, `)u. Then, the constraint functions become (by using the fact

that v > 0)

c1(w) = −w1 , c2(w) =
w2

2 + w2
3

sin2(αmax)
− 1 , w ∈ S2 (14)

which are pure control constraints. Then, introducing the normalized drag and lift coefficients

d = 1
2m
ρSCD0 , cm = 1

2m
ρSCLα , denoting by η > 0 the efficiency factor and ω(t) = fT (t)

m(t)v(t)
+

October 30, 2017 DRAFT



11

v(t)cm(t) > 0, with the help of (13), the local evaluation of the dynamics of system (1) using

the chart ϕa gives

ṙ = v sin(γ) , L̇ =
v

r
cos(γ) cos(χ) , ˙̀ =

v

r

cos(γ) sin(χ)

cos(L)

v̇ =
fT
m
w1 −

(
d+ ηcm(w2

2 + w2
3)
)
v2 − g sin(γ)

γ̇ = ωw2 +
(v
r
− g

v

)
cos(γ)

χ̇ =
ω

cos(γ)
w3 +

v

r
cos(γ) sin(χ) tan(L)

(15)

The previous computations allow to reformulate (GOGP) introducing a new control problem,

named (GOGP)a, which consists in minimizing the cost

Ca
T (r, L, `, v, γ, χ,w) = g(T, ϕ−1a (r, L, `, v, γ, χ)(T ))

subject to the dynamics (15) and the control constraints (14). This pure control constraint optimal

control problem is locally equivalent to (GOGP).

Even if formulation (GOGP)a is widely used in the aerospace community, it does not allow

to describe totally the original problem (GOGP) because of its local nature. Indeed, in several

situations, demanding performance criteria CT and onerous missions force optimal trajectories to

pass through points that do not lie within the domain of the local chart ϕa, and then, exploiting

(GOGP)a either the optimality could be lost or, in the worst case, the numerical computations

may fail.

2) Additional Coordinates to Manage Eulerian Singularities: We introduce another set of

coordinates which cover the singularities (with respect to the path angle γ) of chart (Ua, ϕa) in

which the constraints c1 and c2 are pure control constraints, as provided by expressions (14).

Fig. 2. Frame (i2, j2,k2).

Define the second velocity frame (i2, j2,k2) by



i2 =
v

‖v‖
= cos(θ) sin(φ)eL + sin(θ)e` + cos(θ) cos(φ)er

j2 = − sin(θ) sin(φ)eL + cos(θ)e` − sin(θ) cos(φ)er

k2 = − cos(φ)eL + sin(φ)er

(16)
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and the transformation from the frame (eL, e`, er) to the frame (i2, j2,k2) is

Rb(θ, φ) =


cos(θ) sin(φ) sin(θ) cos(θ) cos(φ)

− sin(θ) sin(φ) cos(θ) − sin(θ) cos(φ)

− cos(φ) 0 sin(φ)

 ∈ SO(3)

The new local chart is (Ub = ϕ−1b (U), ϕb) with

ϕ−1b (r, L, `, v, θ, φ) =

(
r cos(L) cos(`), r cos(L) sin(`),

r sin(L), RT (L, `) ·RT
b (θ, φ)


v

0

0


)

This local map covers the singularities w.r.t. the path angle γ of the chart (Ua, ϕa). In these new

coordinates, the derivative of the velocity is

v̇ = v̇i2 +

[
vθ̇ − v2

r
sin(θ)

(
cos(φ) + sin(φ) tan(L)

)]
j2 (17)

+

[
v2

r
cos2(θ)

(
sin(φ) + tan2(θ)

(
sin(φ)− tan(L) cos(φ)

))
− vφ̇ cos(θ)

]
k2

As previously, we now introduce new control variables (which are complementary to the local

control w), defining z = Rb(θ, φ) · R(L, `)u. The constraints c1 and c2 are given in this local

chart by

c1(z) = −z1 , c2(z) =
z22 + z23

sin2(αmax)
− 1 , z ∈ S2 (18)

Using the same notations as in the previous section, with the help of (17),the local evaluation

of the dynamics of (1) using the chart ϕb gives

ṙ = −v cos(θ) cos(φ) , L̇ =
v

r
cos(θ) sin(φ) , ˙̀ =

v

r

sin(θ)

cos(L)

v̇ =
fT
m
z1 −

(
d+ ηcm(z22 + z23)

)
v2 + g cos(θ) cos(φ)

θ̇ = ωz2 +
v

r
sin(θ)

(
cos(φ) + sin(φ) tan(L)

)
− g

v
sin(θ) cos(φ)

φ̇ = − ω

cos(θ)
z3 +

v

r
cos(θ)

(
sin(φ) + tan2(θ)

(
sin(φ)

− tan(L) cos(φ)
))
− g

v

sin(φ)

cos(θ)

(19)
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We define a new control problem, named (GOGP)b, which consists in minimizing the cost

function

Cb
T (r, L, `, v, θ, φ, z) = g(T, ϕ−1b (r, L, `, v, θ, φ)(T ))

subject to the dynamics (19) and to the control constraints (18). As (GOGP)a, this is a classical

pure control constraint optimal control problem that is locally equivalent to (GOGP).

Remark 2: The mappings ϕ−1a : U → R\{0}, ϕ−1b : U → R\{0} are not defined respectively

for the values χ = π, φ = π: these singularities can be covered by extending ϕ−1a and ϕ−1b also

within Ũ =
[
(0,∞) ×

(
−π

2
, π
2

)
× (0, 2π)

]2
. Moreover, the framework of this paper concerns

launch vehicles able to cover bounded distances (in the region of one hundred kilometers). From

these remarks, without loss of generality, we define the configuration manifold of (GOGP) as

N = Ua ∪ Ub.

C. Equivalence between Global and Local Maximum Principle Formulations

From the previous arguments, it is clear that, within Ua ⊆ R6 \ {0}, (GOGP) is equivalent

to (GOGP)a while, within Ub ⊆ R6 \ {0}, (GOGP) is equivalent to (GOGP)b. However, it

is not clear that the Maximum Principle formulation related to (GOGP), which is a mixed

control-state constraint problem, coincides respectively with the dual formulation of (GOGP)a,

locally within Ua, and with the dual formulation of (GOGP)b, locally within Ub, which are

pure control constraint problems. Indeed, we have a priori three different adjoint formulations,

namely: (p(·), p0, µ1(·), µ2(·)) related to (GOGP) and two multipliers (pa(·), p0a) and (pb(·), p0b)

of the classical pure control constraint Maximum Principle formulations respectively related to

(GOGP)a and (GOGP)b. We shall prove that it is always possible, in these three applications of

the PMP, to choose the multipliers so that the local projections of (p(·), p0) onto charts (Ua, ϕa)

and (Ub, ϕb) coincide respectively with (pa(·), p0a) and (pb(·), p0b). More precisely, the following

result holds.

Theorem 1: Consider the manifold N = Ua ∪ Ub ⊆ R6 \ {0} of all possible scenarios of

(GOGP). Suppose that (r(·),v(·),u(·)) is an optimal solution of (GOGP) in [0, T ]. There exist

a multiplier (p(·), p0, µ1(·), µ2(·)) satisfying the Maximum Principle formulation (4)-(9) and

two multipliers (pa(·), p0a), (pb(·), p0b) related to the classical pure control constraint Maximum
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Principle formulations respectively of (GOGP)a and (GOGP)b, such that p0a = p0b = p0 and

p(t) =

(ϕa)
∗
ϕa(r(t),v(t))

· pa(t) , (r(t),v(t)) ∈ Ua

(ϕb)
∗
ϕb(r(t),v(t))

· pb(t) , (r(t),v(t)) ∈ Ub
(20)

where (·)∗ denotes the pull-back operator.

The proof of Theorem 1 is reported in Appendix A. The main idea is the following. From

the mixed constraint Maximum Principle, we recover a global adjoint vector p(·) of (GOGP)

and we localize it onto one of the two local charts built previously, for example, (Ua, ϕa). Then,

exploiting the local maximality condition (6) and the previous transformation between u and z,

one shows that the covector (ϕa)
∗ · p(·) satisfies the classical pure control constraint Maximum

Principle formulation related to (GOGP)a.

Let us clarify how one could take advantage of this result to solve (GOGP) numerically by

indirect methods. Assume to have an optimal solution (r(·), v(·), u(·)) of (GOGP), within

[0, T ]. Without loss of generality we can suppose that (r,v)(0) ∈ Ua. If the optimal value of

p(0) is known, from pa(0) = (ϕ−1a )∗(r(0),v(0))p(0), we start a shooting method on (GOGP)a.

Suppose that, at a given time τ1 ∈ (0, T ), the optimal trajectory is such that (r,v)(τ1) ∈ Ub \Ua,

i.e. our solution crosses a singular region of the first local chart. Then, we can stop momentarily

the numerical computations at a time τ2 < τ1 such that (r,v)(τ2) ∈ Ua ∩ Ub and starting from

pb(τ2) = (ϕa ◦ϕ−1b )∗ϕa(r(τ2),v(τ2))pa(τ2) a shooting method on (GOGP)b, avoiding the geometrical

singularity related to Ua when reaching the point (r,v)(τ1) ∈ Ub \ Ua. This procedure can be

iterated every time a jump from Ua to Ub (as well as a jump from Ub to Ua) occurs in the optimal

trajectory. The adjoint vector related to (GOGP) is recovered thanks to (20). This methodology

allows to describe optimal solutions of any feasible mission related to (GOGP).

Fig. 3. Optimal trajectory crossing the domains of the two charts.
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D. Optimal Control Synthesis

Let (r(·),v(·),u(·)) be an optimal solution of (GOGP) in [0, T ] and p(·), pa(·) = (par , p
a
L, p

a
` , p

a
v, pγ, pχ)(·)

and pb(·) = (pbr, p
b
L, p

b
`, p

b
v, pθ, pφ)(·) be the adjoint vectors respectively of (GOGP), (GOGP)a

and (GOGP)b as in Theorem 1. The computation of the optimal control u can be achieved

by focusing on the optimal values of the local controls w and z. Hereafter, when clear from

the context, we skip the dependence on t to keep better readability. Denoting Ca := pav
fT
m

,

Cb := pbv
fT
m

, Da := pavηcmv
2 and Db := pbvηcmv

2, from the pure control constraint Maximum

Principle, locally almost everywhere where they are defined, the maximization conditions (5)

related to (GOGP)a and (GOGP)b give respectively

w(t) = argmax

{
Caw1 −Da(w

2
2 + w2

3) + pγωw2 + pχ
ω

cos(γ)
w3 | (21)

w2
1 + w2

2 + w2
3 = 1 , w1 ≥ 0 , w2

2 + w2
3 ≤ sin2(αmax)

}

z(t) = argmax

{
Cbz1 −Db(z

2
2 + z23) + pθωz2 − pφ

ω

cos(θ)
z3 | (22)

z21 + z22 + z23 = 1 , z1 ≥ 0 , z22 + z23 ≤ sin2(αmax)

}
.

Solving these maximization conditions may lead to either regular or singular controls, de-

pending on the value of the two couples (pγ(·), pχ(·)) and (pθ(·), pφ(·)) respectively on non-zero

mesure subsets.

By definition, regular controls are the regular points of the end-point mapping while singular

controls are critical points of the end-point mapping. Then, with respect to (GOGP), regular

controls consist of controls whose extremal, within a non-zero measure set J ⊆ [0, T ], satisfies

either pγ|J(·) 6= 0 ∨ pχ|J(·) 6= 0 if the system travels along the first chart (Ua, ϕa) within J

or pθ|J(·) 6= 0 ∨ pφ|J(·) 6= 0 if the system covers the second chart (Ub, ϕb) within J and,

conversely, singular controls consist of controls for which there exists a non-zero measure set

J ⊆ [0, T ] such that pγ|J(·) = pχ|J(·) = 0 in the first local chart, as well as pθ|J(·) = pφ|J(·) = 0

in the second chart.

1) Regular Controls: Suppose that, locally within a non-zero measure subset J ⊆ [0, T ],

either pγ|J(·) 6= 0 ∨ pχ|J(·) 6= 0 if the system travels along the first chart (Ua, ϕa) within J or

pθ|J(·) 6= 0 ∨ pφ|J(·) 6= 0 if the system covers the second chart (Ub, ϕb) within J . In this case,

regular controls appear.
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Analytical expressions of these controls are derived from (21) and (22), by using Karush-

Kuhn-Tucker conditions, under the following assumption:

Assumption 2: For points (ε, x) ∈ R+×R such that (1+ε)x2 ≤ sin2(αmax), where 0 < αmax ≤

π/6 is constant, the following second order Taylor approximation is considered:
√

1− (1 + ε)x2 ∼=(
1− (1 + ε)x2/2

)
.

This assumption is not limiting because, for most of the launch vehicle applications considered

using the dynamical model of (GOGP), the maximal angle of attack αmax is actually lower

than π/6. Moreover, this assumption has already implicitly been used to recover the analytical

expressions of the drag and the lift listed in Section II-A (see [34] for further details).

The computation of the analytical expressions of regular controls is done in Appendix B. It

is interesting to note that regular controls are well defined in each of the two charts (Ua, ϕa),

(Ub, ϕb) but their local expressions tends to singular values as the optimal trajectory gets close

respectively to the boundary of Ua or Ub.

2) Singular Controls: In some cases, locally within a non-zero measure subset J ⊆ [0, T ], it

could happen that pγ|J(·) = pχ|J(·) = 0 in the first local chart, as well as pθ|J(·) = pφ|J(·) = 0

in the second local chart. The control is then singular and the evaluation of an explicit analytical

optimal strategy is harder to achieve than in the regular case. In this situation, (21) and (22)

reduce to

w(t) = argmax
{
Caw1 −Da(w

2
2 + w2

3) | w2
1 + w2

2 + w2
3 = 1, (23)

w1 ≥ 0, w2
2 + w2

3 ≤ sin2(αmax)
}

z(t) = argmax
{
Cbz1 −Db(z

2
2 + z23) | z21 + z22 + z23 = 1, (24)

z1 ≥ 0 , z22 + z23 ≤ sin2(αmax)
}

The Karush-Kuhn-Tucker conditions do not help anymore because, depending on the value of

Ca or Cb, many uncountable values of (w2, w3) or (z2, z3) are optimal. Instead, a geometric

study is required.

It is in the case of singular controls that Assumption 1 becomes particularly useful to manage

hard computations, as well as the following one:
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Assumption 3: Suppose that J ⊆ [0, T ] is of positive measure. Any optimal trajectory associ-

ated with a singular control in J satisfies, along J ,

if fT > 0 , then ‖v‖ >
√

3

2
g(r)hr

√√√√√1 +
4

9

1

g(r)hr

(
fT
md

)
− 1 .

It is important to note that, for our applications, the magnitude of the velocities of the vehicles

is large enough when fT > 0, so that Assumption 3 is always satisfied, as numerical simulations

confirm. In particular, it must be noticed that this assumption is required only for singular arcs

i.e., if only regular optimal controls arise then no boundaries on the velocities are imposed.

Running several numerical Monte-Carlo simulations, we have not encoutered any singular

arcs. However, for sake of completness, in this paper we provide the expressions of singular

optimal controls in Appendix C, which lead straightforwardly to the proof of the following result.

Proposition 1: Under Assumption 1 and Assumption 3, any singular optimal control of

(GOGP) is well-defined and has a univocal analytical expression.

IV. NUMERICAL RESOLUTION OF (GOGP) VIA HOMOTOPY METHODS

A. Problem of Order Zero

To apply homotopy methods, a problem of order zero, from which the iterative shooting path

starts, must be provided first. This problem should be, on one hand, handy to solve via basic

shooting methods and, on the other hand, as close as possible to (GOGP) to recover easily the

original solution.

The problem of order zero, denoted (GOGP)0, consists in minimizing

C0
T (r(·),v(·),u(·)) = g0(T, r(T ),v(T )) (25)

subject to the simplified dynamics

ṙ(t) = v(t) , v̇(t) = f0(t, r(t),v(t),u(t))

(r(t),v(t)) ∈ N , u(t) ∈ S2 , (r(T ),v(T )) ∈M0 ⊆ N

c1(v(t),u(t)) := −v(t) · u(t) ≤ 0 , r(0) = r0 , v(0) = v0

c2(v(t),u(t)) :=

(
‖u(t)∧v(t)‖
‖v(t)‖ sinαmax

)2

− 1 ≤ 0
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Here, the user can choose the cost g0(T, r(T ),v(T )), the dynamics f0(t, r,v,u) and the target

submanifold M0. Dynamics f0(t, r,v,u) is chosen to remove bothersome contributions, that is

f0(t, r,v,u) = f(t, r,v,u)−
(
ωNED(r,v) ∧ v +

T (t,u)

m
+
g(r)

m

)
(26)

where ωNED(r,v) represents the angular velocity of the NED frame (eL, el, er) w.r.t. the inertial

frame (I,J ,K) and it is important to evaluate (26) strictly onto charts (Ua, ϕa), (Ub, ϕb),

otherwise its analytical expression could be more complex than the original dynamics. Moreover,

M0 is chosen such that non-challenging maneuvers suffice to reach the target with an optimal

behavior.

The resolution of (GOGP)0 by standard indirect methods leads to a simplified solution

(r0(·),v0(·),u0(·)) with extremal (p0(·), p00). Led by the previous results, from now on, we

avoid to report the multipliers related to the mixed contraints.

B. Homotopy Method Starting from (GOGP)0

We first introduce the family of problems (GOGP)λ, depending on the parameter λ. Each

problem consists in minimizing the parametrized cost

CλT (r(·),v(·),u(·)) = gλ(T, r(T ),v(T ))

subject to the parametrized dynamics

ṙ(t) = v(t) , v̇(t) = fλ(t, r(t),v(t),u(t))

(r(t),v(t)) ∈ N , u(t) ∈ S2 , (r(T ),v(T )) ∈Mλ ⊆ N

c1(v(t),u(t)) := −v(t) · u(t) ≤ 0 , r(0) = r0 , v(0) = v0

c2(v(t),u(t)) :=

(
‖u(t)∧v(t)‖
‖v(t)‖ sinαmax

)2

− 1 ≤ 0

There are no restrictions on the choice of the parameter λ, usually a vector of some metric

space. It could be a physical parameter as well as an artificial variable. The family of problems

is built such that, for λ = 0, (GOGP)λ is equivalent to (GOGP)0, while, it exists some value

λ̂, such that (GOGP)=(GOGP)λ̂.

If one is able to solve (GOGP)λ, a solution (rλ(·),vλ(·),uλ(·)) with extremal (pλ(·), p0λ) is

found. The aim of the homotopy procedure consists then in seeking the solution (rλ̂(·),vλ̂(·),uλ̂(·))
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with extremal (pλ̂(·), p0
λ̂
) of the original problem (GOGP)λ̂, starting from the solution (r0(·),v0(·),u0(·))

with extremal (p0(·), p00) of the problem of order zero, by making λ converge to λ̂.

An example of a parametrized family of problems (GOGP)λ is given hereafter, exploiting the

considerations of Section IV-A. We set λ = (λ1, λ2) ∈ [0, 1]2 to be the homotopic parameter

and we define

gλ(T, r,v) := g0(T, r,v) + λ1

(
g(T, r,v)− g0(T, r,v)

)
(27)

fλ(t, r,v,u) := f(t, r,v,u)− (1− λ1)
(
ωNED(r,v) ∧ v +

T (t,u)

m
+
g(r)

m

)
(28)

while λ2 acts only on M0 and it is such that M ≡ Mλ2=1. We see that the original problem

corresponds to λ = (1, 1). The idea of splitting the homotopic parameter into two components

(λ1 and λ2) helps to treat separately the hard terms of the dynamics and the mission involved

(see Section V).

Note that homotopy methods may fail whenever, during the iteration path, bifurcation points,

singularities or different connected components are encountered (we refer to [38], [1] for details).

However, numerical simulations show that our choice of the problem of order zero (GOGP)0

is such that the main structure of the solutions of the original problem (GOGP) is mantained,

which makes the homotopy procedure converge correctly.

V. LAUNCH VEHICLE APPLICATION: ENDO-ATMOSPHERIC MISSILE INTERCEPTION

The context is the endo-atmospheric interception. The problem consists in steering a missile

towards a (usually) fast target, minimizing some criterion. We are interested in the mid-course

phase which starts when the vehicle reaches a given threshold of the magnitude of the velocity.

The target consists of a predicted interception point. This point may change over time, and then,

accurate computations are needed.

Our Optimal Interception Problem (OIP) consists in minimizing the cost

CT (r(·),v(·),u(·)) = C1T − ‖v(T )‖2 + C2

∫ T

0

(
‖u(t) ∧ v(t)‖
‖v(t)‖

)2

dt (29)

where 0 ≤ C1 ≤ 1, C2 ≥ 0 are constant, under the smooth dynamical control system (2), with a

free final time T . This cost is set up to maximize the chances to reach the target with reasonable

delays. The final manifold M is

M =

{
(r,v) ∈ N | r = r1 ,

v · er
‖v‖

= cos(ψ1), (30)
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v · eL
‖v‖

= cos(ψ2) ,
v · el
‖v‖

= sin(ψ2)

}
where r1 is a fixed final position and ψ1 and ψ2 are fixed angles. In other words, the final

position and the direction of the final velocity are fixed, letting the modulus of the final velocity

free. This choice is coherent with cost (29) and the fact that better chances of complete the

mission arise if specific orientations of the missile are ensured. One can note that Assumption

1 is satisfied.

We propose to solve (OIP) by homotopy, applying verbatim the procedure presented in Section

IV. In particular, we proceed using (27) and (28) to define the family of parametrized problems

(OIP)λ, where λ = (λ1, λ2) ∈ [0, 1]2 and λ2 acts on the final submanifold only (as explained in

Section IV-B).

A. Simplified Problem (OIP)0

We need to provide good candidates for the simplified cost (25) and the submanifold M0,

such that, the optimal solution of the problem of order zero (OIP)0 will initialize successfully

the homotopy procedure.

Without loss of generality, the problem of order zero can be chosen such that its optimal

trajectory lies in the domain of the first chart. Following the procedure provided is Section

IV-A, one shows that (OIP)0 can be selected as

(OIP)0



min −v2(T ) , (w2, w3) ∈ R2

ṙ = v sin(γ) , L̇ =
v

r
cos(γ) cos(χ) , l̇ =

v

r

cos(γ) sin(χ)

cos(L)

v̇ = −(d+ ηcm(w2
2 + w2

3))v
2 , γ̇ = vcmw2 , χ̇ =

vcm
cos(γ)

w3

where the contribution of the thrust and the gravity are removed, no boundaries on the controls

are imposed and C1 = C2 = 0. More specifically, by applying the Maximum Principle to (OIP)0

under appropriate assumptions, one is able to recover an approximated analytical guidance law

which actually initializes successfully the entire homotopy procedure to solve (OIP). For sake

of conciseness, we do not report the details (the interested reader can find the whole treatise in

[4]).
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B. Numerical Simulations

For the numerical simulations, we use predictor-corrector (PC) continuation methods. More

precisely, we make parameters λ1, λ2 converge to 1 by using a standard linear continuation,

ensuring a fast convergence of the predictor-corrector method. Moreover, we first act on the

contribution of the gravity/thrust (by λ1), then we recover the original scenario (by λ2). Note

that the PC continuation method is discrete, in contrast with differential methods, for which

the Jacobian of the homotopy method must be computed (for further details, see [1], [9]). The

shooting method is solved using the C routines hybrd.c [16] while a fixed time-step explicit

fourth-order Runge-Kutta method is used to integrate differential equations (whose number of

integration steps varies between 250 and 350).

A solid-fuel propelled missile is simulated. Below, its numerical values:

• cm(0) = 0.00075 m−1, d(0) = 0.00005 m−1, η = 0.442, hr = 7500 m and αmax = π/6;

•
q

m0

(t) =

0.025 s−1 , t ≤ 20

0 , t > 20
,
fT
m0

(t) =

37.5 m · s−2 , t ≤ 20

0 , t > 20

• We fix the modulus of the initial velocity: v(0) = 500 m/s.

We consider four tests. Without loss of generality, we choose two scenarios whose initial

and final targets lie in the domain of the first local chart Ua, which we always represent by

their local coordinates (r,v) ∼= (r, L, l, v, γ, χ) (reported in standard units). For each scenario

we investigate two different cost functions. The initial point (r0,v0) is fixed to the value

(rT + 1000, 0, 0, 500, 0, 0). Moreover, we fix also the solution of (OIP)0 (from which the whole

homotopy procedure starts) to the trajectory arising considering as simplified final target manifold

the following set

M0 =
{

(r − rT , L · rT , l · rT ) = (5000, 14000, 0) , (γ, χ) = (0, 0)
}
.

1) First Scenario: Simple Mission: We consider first a standard and accessible mission. The

corresponding final target manifold (30) is

M =
{

(r − rT , L · rT , l · rT ) = (5000, 14000,−2000),

(γ, χ) = (−π/6, π/6)
}
.

The two tests arising from this scenario are given respectively by the following forms of cost

function (29)

(OIP)1 : CT (v) = −v2(T ) , (OIP)1T : CT (v) = T − v2(T ) .
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Problem (OIP)1T represents a more realistic variety of interception missions. Referring to the

procedure detailed in Section IV, we note that parameter λ1 acts only in the cost function of

(OIP)1T .

Solving these two problems by means of homotopy methods gives respectively (T,CT (v))(OIP)1 =

(22.1,−(803.8)2) and (T,CT (v))(OIP)1T
= (21.4, −(753.7)2) as optimal values. The simulations

take around 0.9 s for (OIP)1, for which 7 iterations on λ1 and 9 on λ2 are required, and 1.5 s

for (OIP)1T , where rather 17 iterations on λ1 and 15 on λ2 are required. The gap in the number

of iterations needed is explained by the presence of the minimal time in (OIP)1T which makes

the structure of the solutions more complicated.
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Fig. 4. Optimal solutions of problems (OIP)1 and (OIP)1T .
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Figure 4 shows the optimal solutions of this test case. The blue dot-dashed line represents the

solution of (OIP)0 which is obtained in around 0.15 s. Figure 4 b) shows w2
2(·) + w2

3(·) which

saturates at the value 0.25. From this picture, it is interesting to notice that, again, the minimal

time obliges the controller to take abrupter maneuvers and then bang arcs arise more naturally.

2) Second Scenario: Complex Mission: The second mission considered is more challenging.

Proposing to intercept a target quite close to the initial point, the vehicle is led to perform abrupt

maneuvers to recover an optimal solution.

The final target manifold (30) is

M =
{

(r − rT , L · rT , l · rT ) = (9000, 7500, 2000),

(γ, χ) = (−π/4,−π/4)
}
.

The same cost functions as before are taken, i.e. with respect to the previous notations we

consider the two problems (OIP)2 and (OIP)2T .

The optimal values are respectively (T,CT (v))(OIP)2 = (33.56,−(437.6)2) and (T,CT (v))(OIP)2T
=

(33.5,−(401.4)2), and simulations take around 2.2 s for (OIP)2 (7 iterations on λ1 and 21 on λ2),

and 5.5 s for (OIP)1T (17 iterations on λ1 and 78 on λ2). In this test, the difference between the

trajectories related to (OIP)2 and (OIP)2T is quite imperceptible. This is understood by inspecting

the normalized constraint in Figure 5 b). The two optimal strategies saturate most of the time

and almost at the same point, because of the abrupt maneuvers needed to reach the target.

More interestingly, a change of local chart (from (Ua, ϕa) to (Ub, ϕb)) occurs. Indeed, the

optimal trajectory is close twice to the critical value γ = π/2. In this case, the change of

coordinates is not compulsory but it increases considerably the performances of the algorithm.

Indeed, without it, simulations take 4 s for (OIP)2 and 23 s for (OIP)2T . Anyhow, other tests

show that some scenarios cannot be solved without the change of local chart.

All the four tests were treated also with a non-initialized direct method (AMPL combined with

IPOPT, using 200 time steps, see [17]). Modifying the initial guess of IPOPT, these problems

are solved by the direct method with computational times at least comparable to the ones given

by our method, obtaining the good optimal solutions but less accurately. Moreover, when (OIP)2

and (OIP)2T are considered, the computational time of the direct method increases fast because

of the presence of singularities. The modified indirect approach reveals itself to be very efficient,

and sometimes, more successful than direct methods.
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Fig. 5. Optimal quantities of problems (OIP)2 and (OIP)2T .

VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have proposed a theoretical analysis and a numerical procedure to solve

optimal control problems for endo-atmospheric launch vehicle systems.

Expressing the problem in an intrinsic geometric way, we have solved it by restricting to two

local representations (in the sense of local charts in differential geometry on manifolds). The

change of local chart that we have used appears to be instrumental in order to make numerical

methods converge when the optimal strategy meets or is close to Euler singularities. We have

exploited these local behaviors to provide the whole structure of optimal controls, as functions
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of the state and the costate. Moreover, we have proved that every singular arc has a particular

analytical form.

Our numerical procedure combines indirect methods with homotopy methods. Using this

scheme, we have addressed the problem of a missile interception. We have solved the optimal

control problem by acting on two parameters of deformation: the first one recovers the contri-

bution of the thrust and the gravity, previously removed in the problem of order zero, while

the second parameter leads to the final scenario. Numerical simulations on endo-atmospheric

interception scenarios show the efficiency of our approach.

Future works will focus on the improvement of the dynamical model and of the computational

times.

The dynamical model can be improved by considering the non-minimum phase phenomenon,

a classical issue for launch vehicles applications (see, e.g. [3]), which can be modelled by delays.

Motivated by the convergence result established in [5], the idea consists in adding the delay to

the model by continuation.

For the computational time, even if many simulations on different scenarios show that the

computation of optimal trajectories by using our approach takes on average 0.5-1 Hz, we

cannot ensure a real-time processing yet. However, this is achieved by applying the continuation

algorithm offline first. Indeed, we can evaluate offline optimal strategies for several possible

scenarios, and then, and recover online, by spatial continuation (i.e. on the continuation parameter

λ2), the solution of a new mission with few homotopic iterations, which takes only milliseconds.

APPENDIX

A. Proof of Theorem 1

Here, we provide a proof of Theorem 1. In the following, we interpret the set of all possible

scenarios N = Ua∪Ub as a manifold of dimension 6. Moreover, the constraint c1 is never active

and S2 represents a constraint which is parametrizable in R2. Then, we remove these constraints

from the formulation without loss of generality, supposing to seek an optimal control u(·) of

(GOGP) in R3 satisfying c2 with a fixed final time T .

By similarity between the charts (Ua, ϕa) and (Ub, ϕb), we prove the assert only for the first

chart (Ua, ϕa).
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Let (q(·),u(·)) be an optimal solution of (GOGP) in [0, T ], where we denote q = (r,v).

Select s1, s2 ∈ (0, T ) such that s1 < s2, q([s1, s2]) ⊆ Ua and denote xa(·) = ϕ−1a ◦q(·). Problem

(GOGP) is written as

(GOGP)



min

∫ T

0

f 0
(
t, qν(t),ν(t)

)
dt

q̇ν(t) = h
(
t, qν(t),ν(t)

)
,

qν(0) = q0 , qν(T ) ∈M

c2
(
qν(t),ν(t)

)
≤ 0 , a.e. [0, T ]

where f 0 is the Lagrange form of the Mayer cost of (GOGP), while, recalling the notations of

Section III-B, its local version in the chart (Ua, ϕa) writes as

(GOGP)a



min

∫ s2

s1

f 0
(
t, ϕ−1a ◦ ya(t),Φ

(
ya(t),ν

′(t)
))
dt

ẏa(t) = d(ϕa) · h
(
t, ϕ−1a ◦ ya(t),Φ

(
ya(t),ν

′(t)
))

ya(0) = ϕ−1a (q0) , ya(s) = ϕ−1a (q(s))

c2
(
ϕ−1a ◦ ya(t),Φ

(
ya(t),ν

′(t)
))
≤ 0 , a.e. [s1, s2]

ν ′(·) ∈ Va

where

Φ : U × R3 → R3 : (x,ν ′) 7→ R>(x) ·R>a (x)ν ′

is smooth and Va is an open neighborhood of z(·) = Ra(xa(·))·R(xa(·))u|[s1,s2](·) in L∞([s1, s2],R3)

such that every trajectory of the vector field d(ϕa) ·h
(
t, ϕ−1a (x),Φ(x,ν ′)) is contained in U for

every ν ′(·) ∈ Va. The introduction of Va is not limiting since the study of necessary conditions

is local. An optimal solution of (GOGP)a is then (xa(·), z(·)).

Applying the Maximum Principle to (GOGP), we obtain a non-positive scalar p0, an absolutely

continuous mapping p : [0, T ] → T ∗N ' R6 and a function µ(·) ∈ L∞([0, T ],R), with

(p(·), p0) 6= 0, such that, denoting

H0(t, q,p, p0,u) = p · h(t, q,u) + p0f 0(t, q,u) ,
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almost everywhere in [0, T ], there hold

ṗ(t) = −∂H
0

∂q
(t, q(t),p(t), p0,u(t))− µ(t) · ∂c2

∂q
(q(t),u(t)) (31)

H0(t, q(t),p(t), p0,u(t)) ≥ H0(t, q(t),p(t), p0,u) (32)

for every u such that c2(q(t),u) ≤ 0

∂H0

∂u
(t, r(t),v(t),p(t), p0,u(t)) + µ(t) · ∂c2

∂u
(q(t),u(t)) = 0 (33)

and, furthermore, conditions (7)-(9) hold.

Since the quantity c2
(
q,Φ

(
ϕa(q),ν ′

))
does not depend on the state q, deriving it w.r.t. q at

(q(t), z(t)), one obtains

∂c2
∂q

(q(t),u(t)) +
∂c2
∂u

(q(t),u(t)) · ∂Φ

∂q
(xa(t), z(t)) = 0 .

Multiplying the previous expression by µ(t) and plugging it into (33), we have that

µ(t) · ∂c2
∂q

(q(t),u(t)) =
∂H0

∂u
(t, r(t),v(t),p(t), p0,u(t)) · ∂Φ

∂q
(xa(t), z(t))

such that, for almost every t ∈ [s1, s2], the adjoint equation (31) becomes

ṗ(t) = −∂H
0

∂q
(t, q(t),p(t), p0,u(t)) (34)

−∂H
0

∂u
(t, r(t),v(t),p(t), p0,u(t)) · ∂Φ

∂q
(xa(t), z(t)) .

Then, by defining pa(t) = (ϕ−1a )∗q(t) · p(t) for every t ∈ [s1, s2], it is straightforward to obtain

from (34) the following adjoint equation

ṗa(t) = −pa(t) ·
∂[d(ϕa) · h

(
t, ϕ−1a (x),Φ(x,ν ′))]

∂x
(t, xa(t), z(t)) (35)

−p0
∂[f 0

(
t, ϕ−1a (x),Φ(x,ν ′))]

∂x
(t, xa(t), z(t)) .

Moreover, from the properties of Φ, the maximality condition (32) reads also

H0
a(t, xa(t), pa(t), p

0, z(t)) ≥ H0
a(t, q(t),p(t), p0, z) (36)

for every z such that c2
(
ϕ−1a ◦ xa(t),Φ

(
xa(t), z

))
≤ 0

where

H0
a(t, x, p, p0, z) = p · d(ϕa) · h

(
t, ϕ−1a (x),Φ(x, z))
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+p0f 0
(
t, ϕ−1a (x),Φ(x, z))

From conditions (35) and (36), we deduce that (pa(·), p0) is the sought multiplier for the

Maximum Principle formulation of (GOGP)a. The conclusion follows.

B. Computation of Regular Controls

In this section we compute regular optimal controls for (GOGP), under Assumption 2. We

start supposing that the system is described by using the first local chart (Ua, ϕa) in a non-zero

mesure subset J ⊆ [0, T ]. Then, pγ|J(·) 6= 0 or pχ|J(·) 6= 0.

If pav|J(·) = 0, by definition Ca|J(·) = Da|J(·) = 0 and then, from (21) and the Cauchy-

Schwarz inequality, we obtain

w2 =
sin(αmax)pγ√
p2γ +

p2χ
cos2(γ)

, w3 =
sin(αmax)pχ

cos(γ)
√
p2γ +

p2χ
cos2(γ)

.

Since c1 is always negative, we obtain w1 =
√

1− (w2
2 + w2

3).

We analyze now the harder case pav|J(·) 6= 0. Denote λ = pγω, ρ = pχ
ω

cos(γ)
. In the following,

we apply the Karush-Kuhn-Tucker conditions. For this, we first remark that, if the constraints of

(21) were active at the optimum, then it would satisfy w ∈ S2, w2
2 +w2

3 = sin2(αmax), and then,

the gradients of the constraints evaluated at this point would satisfy the linear independence

constraint qualification.

Applying the Karush-Kuhn-Tucker conditions to (21), we infer the existence of a non-zero

multiplier (η1, η2) ∈ R× R+ which satisfies
Ca − 2η1w1 = 0 , 2(η1 + η2 +Da)w2 − λ = 0

2(η1 + η2 +Da)w3 − ρ = 0 , η2(w
2
2 + w2

3 − sin2(αmax)) = 0 .

Since either λ 6= 0 or ρ 6= 0, necessarily η1 + η2 +Da 6= 0 and then the optimal control satisfies

ρw2 = λw3. We proceed considering λ 6= 0, i.e. w3 = (ρ/λ)w2. The problem is reduced to the

study of

max

{
Caw1 −

(
1 +

ρ2

λ2

)
(Daw

2
2 − λw2) | w2

1 +

(
1 +

ρ2

λ2

)
w2

2 = 1,

(
1 +

ρ2

λ2

)
w2

2 ≤ sin2(αmax)

}
.
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In other words, we seek points (w1, w2) such that the relations

w1 =
1

Ca

(
1 +

ρ2

λ2

)
(Daw

2
2 − λw2) +

C

Ca
, w2

1 +

(
1 +

ρ2

λ2

)
w2

2 = 1, (37)(
1 +

ρ2

λ2

)
w2

2 ≤ sin2(αmax)

are satisfied with the largest possible value of C ∈ R. Several cases occur.

• Ca > 0 :

The optimum is given by the contact point between the parabola and the ellipse coming

from (37), that lies in the positive half-plane w1 > 0. Matching the first derivatives and

using Assumption 2, we obtain

w1 =

√
1− λ2 + ρ2

(Ca + 2Da)2
, w2 =

λ

Ca + 2Da

if λ2+ρ2

(Ca+2Da)2
≤ sin2(αmax). Saturations of the control may arise i.e., if λ

Ca+2Da
< − sin(αmax)/(1+

ρ2

λ2
), then w1 = cos(αmax), w2 = − sin(αmax)/(1+ ρ2

λ2
) and, if λ

Ca+2Da
> sin(αmax)/(1+ ρ2

λ2
),

then w1 = cos(αmax), w2 = sin(αmax)/(1 + ρ2

λ2
).

• Ca < 0 :

In this case, since w1 > 0, the optimum becomes the point of intersection beetwen the

parabola and the upper part of the ellipse given by (37) for which C takes the max-

imum value. Only saturations are allowed. Indeed, if λ
Ca

> 0, then w1 = cos(αmax),

w2 = − sin(αmax)/(1 + ρ2

λ2
) and, if λ

Ca
< 0, then w1 = cos(αmax), u2 = sin(αmax)/(1 + ρ2

λ2
).

A similar procedure holds when ρ 6= 0, w2 = (λ/ρ)w3.

At this step, we have found the optimal strategy in the regular case for the first local chart

representation. By the similarity of (21) and (22), similar results hold true for the local control

z using instead the second local chart (Ub, ϕb) for which λ and ρ are replaced respectively by

pθω and by −pφ ω
cos(θ)

.

C. Computation of Singular Controls

In this section we compute singular optimal controls for (GOGP), under Assumption 1 and

Assumption 3, within a non-zero mesure subset J ⊆ [0, T ]. In the following, we need the adjoint
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equations related to (GOGP)a:

ṗar = paL
v

r2
cos(γ) cos(χ) + pal

v

r2
cos(γ) sin(χ)

cos(L)

+ pγ

(
vcm
hr

w2 +
v

r2
cos(γ) +

∂g

∂r

cos(γ)

v

)
+ pχ

(
vcm

hr cos(γ)
w3 +

v

r2
cos(γ) sin(χ) tan(L)

)
+ pav

(
∂g

∂r
sin(γ)− v2

hr

(
d+ ηcm(w2

2 + w2
3)
))

ṗaL = −pal
v

r

cos(γ) sin(χ) tan(L)

cos(L)
− pχ

v

r

cos(γ) sin(χ)

cos2(L)

ṗal = 0

ṗav = −par sin(γ)− paL
cos(γ) cos(χ)

r
− pal

cos(γ) sin(χ)

r cos(L)

+ 2pavv
(
d+ ηcm(w2

2 + w2
3)
)

+ pγ

(
ω

v
w2 −

cos(γ)

r
− g

v2
cos(γ)

)
+ pχ

(
ω

v

w3

cos(γ)
− cos(γ) sin(χ) tan(L)

r

)

ṗγ = −parv cos(γ) + paL
v

r
sin(γ) cos(χ) + pal

v

r

sin(γ) sin(χ)

cos(L)

+ pχ

(
v

r
sin(γ) sin(χ) tan(L)− ω sin(γ)

cos2(γ)
w3

)
+ pγ

(
v

r
− g

v

)
sin(γ) + pavg cos(γ)

ṗχ = paL
v

r
cos(γ) sin(χ)− pal

v

r

cos(γ) cos(χ)

cos(L)
− pχ

v

r
cos(γ) cos(χ) tan(L)

The first result is that, in the singular case, Assumption 1 allows to focus only on cases for

which pav|J(·) 6= 0 and pbv|J(·) 6= 0.

Lemma 1: Suppose pγ|J(·) = pχ|J(·) = 0 (as well as pθ|J(·) = pφ|J(·) = 0). Then, under

Assumption 1, pav|J(·) 6= 0 (as well as pbv|J(·) 6= 0).
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Proof: We prove the statement considering the first local chart (Ua, ϕa). The second local chart

presents the same behavior. By contradiction, suppose that pγ|J(·) = pχ|J(·) = pav|J(·) = 0. From

the adjoint equations of pav, pγ and pχ restricted to J , we obtain

−v cos(γ)
v

r
sin(γ) cos(χ)

v

r

sin(γ) sin(χ)

cos(L)

0
v

r
cos(γ) sin(χ) −v

r

cos(γ) cos(χ)

cos(L)

− sin(γ)
cos(γ) cos(χ)

r

cos(γ) sin(χ)

r cos(L)




par

paL

pal

 =


0

0

0

 .

The determinant of the matrix is v2 cos(γ)
r2 cos(L)

6= 0, then (par , p
a
L, p

a
l )|J(·) = 0. This implies that

the adjoint vector is zero everywhere in [0, T ]. Assumption 1, the transversality conditions and

p(·) ≡ 0 give p0 = 0, thus raising a contradiction because we must have (p(·), p0) 6= 0. �

1) First Local Chart Representation: We start supposing that the system is described by using

the first local chart (Ua, ϕa) in a non-zero mesure subset J ⊆ [0, T ]. Then, we focus on (23).

From now on pav|J(·) 6= 0 and, when clear from the context, we skip the dependence on t to keep

better readability. Moreover, we introduce the following local representation of the dynamical

vectors

X(t, r,v) := v sin(γ)
∂

∂r
+
v

r
cos(γ) cos(χ)

∂

∂L
+
v

r

cos(γ) sin(χ)

cos(L)

∂

∂l

−
(
dv2 + g sin(γ)

) ∂
∂v

+
(v
r
− g

v

)
cos(γ)

∂

∂γ
+
v

r
cos(γ) sin(χ) tan(L)

∂

∂χ

Y1(t, r,v) :=
fT
m

∂

∂v
, YQ(t, r,v) := −ηcmv2

∂

∂v

Y2(t, r,v) := ω
∂

∂γ
, Y3(t, r,v) :=

ω

cos(γ)

∂

∂χ
.

We recall that the Lie bracket of two vector fields X , Y is defined as the derivation [X, Y ](f) :=

X(Y f)− Y (Xf), for every f ∈ C∞.

Lemma 2: Using the first local chart (Ua, ϕa), for times t ∈ J such that (r,v)(t) lies within

Ua, the following expressions hold:

d

dt

〈
p, Y2

〉
=
〈
p,

∂

∂t
Y2

〉
+
〈
p, [X, Y2]

〉
+ w1

〈
p, [Y1, Y2]

〉
(38)

+w3

〈
p, [Y3, Y2]

〉
+ (w2

2 + w2
3)
〈
p, [YQ, Y2]

〉
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d

dt

〈
p, Y3

〉
=
〈
p,

∂

∂t
Y3

〉
+
〈
p, [X, Y3]

〉
+ w1

〈
p, [Y1, Y3]

〉
(39)

+w2

〈
p, [Y2, Y3]

〉
+ (w2

2 + w2
3)
〈
p, [YQ, Y3]

〉
d

dt

〈
p, [X, Y2]

〉
=
〈
p,

∂

∂t
[X, Y2]

〉
+
〈
p, [X, [X, Y2]]

〉
(40)

+w1

〈
p, [Y1, [X, Y2]]

〉
+ w2

〈
p, [Y2, [X, Y2]]

〉
+w3

〈
p, [Y3, [X, Y2]]

〉
+ (w2

2 + w2
3)
〈
p, [YQ, [X, Y2]]

〉
d

dt

〈
p, [X, Y3]

〉
=
〈
p,

∂

∂t
[X, Y3]

〉
+
〈
p, [X, [X, Y3]]

〉
(41)

+w1

〈
p, [Y1, [X, Y3]]

〉
+ w2

〈
p, [Y2, [X, Y3]]

〉
+w3

〈
p, [Y3, [X, Y3]]

〉
+ (w2

2 + w2
3)
〈
p, [YQ, [X, Y3]]

〉
.

The idea developed here exploits expressions (38)-(41) to seek an analytical expression of the

optimal control w(·). The main step is based on the following statements which come from Lie

bracket computations:

(A) [Y1, Y2], [YQ, Y2] are proportional to ∂
∂γ

;

(B) [Y1, Y3], [Y2, Y3], [YQ, Y3], [Y2, [X, Y3]] are proportional to ∂
∂χ

;

(C) Considering pγ|J(·) = pχ|J(·) = 0, then
〈
p, [X, [X, Y3]]

〉
,
〈
p, [Y1, [X, Y3]]

〉
,
〈
p, [YQ, [X, Y3]]

〉
are proportional to ṗχ;

(D) Considering pγ|J(·) = pχ|J(·) = 0, then
〈
p, ∂

∂t
[X, Y2]

〉
is proportional to

〈
p, [X, Y2]

〉
while〈

p, ∂
∂t

[X, Y3]
〉

is proportional to
〈
p, [X, Y3]

〉
.

Now, pγ|J(·) = pχ|J(·) = 0 holds. Then, (A) and (B) applied to (38) and (39) give
〈
p, [X, Y2]

〉∣∣∣∣
J

=〈
p, [X, Y3]

〉∣∣∣∣
J

= 0. These expressions, plugged into (41) using (B), (C) and (D), lead to

w3 ·
〈
p, [Y3, [X, Y3]]

〉
= 0 , in J . (42)

Seeking an analytical expression of the singular control from (42) becomes a hard and tedious

task if
〈
p, [Y3, [X, Y3]]

〉
= 0 because more many time derivatives are required. Fortunately, the

physical environment of general lunch vehicle applications help us making these time derivative

computations useless.

Lemma 3: Under Assumption 3,
〈
p, [Y3, [X, Y3]]

〉
6= 0 almost everywhere in J .
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Proof: By contradiction, suppose that
〈
p, [Y3, [X, Y3]]

〉
= 0 a.e. within J . This implies that

cos(χ)paL + sin(χ)
cos(L)

pal = 0 a.e. within J . The previous expression, combined with the adjoint

equation of pχ, gives paL|J(·) = pal |J(·) = 0.

On the other hand, from the adjoint equation of pγ , we have (vpar − gpav)|J(·) = 0. Combining

this expression with its derivative w.r.t. time within J and imposing pav|J(·) 6= 0 lead to

v4 + 3g(r)hrv
2 − g(r)hr

(
fTw1

m(d+ ηcm(w2
2 + w2

3))

)
= 0 .

First of all, if fT = 0 a contradiction arises immediately. The only physically meaningful solution

is

v =

√
3

2
g(r)hr

√√√√√1 +
4

9

1

g(r)hr

(
fTw1

m(d+ ηcm(w2
2 + w2

3))

)
− 1

and, since 0 ≤ w1 ≤ 1, a contradiction arises because of Assumption 3. �

The previous results make us able to reformulate (23) as

(w1, w2) = argmax
{
Caw1 −Daw

2
2 | w2

1 + w2
2 = 1 , w2

2 ≤ sin2(αmax)
}

that, now, we can solve. Notice that Da 6= 0 and Ca 6= 0 if and only if fT 6= 0.

Suppose first that Ca = 0 (i.e. the system crosses a ballistic phase). In this case, it is clear that

component w1 of the control does not affect the dynamics and then we can chose it arbitrarily,

satisfying the appropriate constraints. For this, we obtain w1 = 1, w2 = 0 if Da > 0 and

w1 = cos(αmax), w2
2 = sin2(αmax) if Da < 0.

Let now Ca 6= 0. Exploiting a graphical study, it is clear that w1 = 1, w2 = 0 if Ca > 0 while

w1 = cos(αmax), w2
2 = sin2(αmax) if Ca < 0.

To conclude the study of the optimal control w.r.t. the first local chart, it remains to establish

the value of the coordinate w2 when w1 = cos(αmax) and w2
2 = sin2(αmax). For this, we recall

expression (40). Indeed, it is clear that, when
〈
p, [Y2, [X, Y2]]

〉
6= 0, the second coordinate of

the control is given by (recall statements (A)-(D))

w2 = −

〈
p, [X, [X, Y2]]

〉
〈
p, [Y2, [X, Y2]]

〉 − w1

〈
p, [Y1, [X, Y2]]

〉
〈
p, [Y2, [X, Y2]]

〉
−w2

2

〈
p, [YQ, [X, Y2]]

〉
〈
p, [Y2, [X, Y2]]

〉 .
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If instead
〈
p, [Y2, [X, Y2]]

〉
= 0 a.e. in J , then, suppose that

〈
p, [Y2, [Y2, [X, Y2]]]

〉
6= 0.

Proceeding as in (40), (41) with the same arguments as above, we have

w2 = −

〈
p, [Y2, [X, [X, Y2]]]

〉
〈
p, [Y2, [Y2, [X, Y2]]]

〉 − w1

〈
p, [Y2, [Y1, [X, Y2]]]

〉
〈
p, [Y2, [Y2, [X, Y2]]]

〉
−w2

2

〈
p, [Y2, [YQ, [X, Y2]]]

〉
〈
p, [Y2, [Y2, [X, Y2]]]

〉 .

We can prove that actually one between the two previous formulas always holds.

Lemma 4: Under Assumption 3, almost everywhere in J , it holds〈
p, [Y2, [X, Y2]]

〉
6= 0 or

〈
p, [Y2, [Y2, [X, Y2]]]

〉
6= 0 .

Proof: By contradiction,
〈
p, [Y2, [X, Y2]]

〉
= 0 and

〈
p, [Y2, [Y2, [X, Y2]]]

〉
= 0 a.e. in J . From

this, one recovers respectively the following two expressions(
sin(γ)par +

cos(γ) cos(χ)

r
paL +

cos(γ) sin(χ)

r cos(L)
pal − vg sin(γ)pav

)∣∣∣∣
J

(·) = 0(
cos(γ)par −

sin(γ) cos(χ)

r
paL −

sin(γ) sin(χ)

r cos(L)
pal − vg cos(γ)pav

)∣∣∣∣
J

(·) = 0

which lead to cos(χ)paL + sin(χ)
cos(L)

pal = 0 a.e. within J . This expression, combined with the adjoint

equation of pχ, gives paL|J(·) = pal |J(·) = 0. On the other hand, from the adjoint equation of

pγ , we have (vpar−gpav)|J(·) = 0. Proceeding as in the proof of Lemma 3, a contradiction arises. �

2) Second Local Chart Representation: The approach proposed in the previous section is no

more exploitable in the second local chart (Ub, ϕb) for (24). Indeed, the terms of the gravity and

the curvature of the Earth contained in (19) make the computations on the Lie algebra generated

by the local fields hard to treat. However, we can still recover singular arcs.

Thanks to the previous computation, we know the analytical behavior of singular controls

for every point of the domain of the first local chart. Then, it is enough to compute possible

singular arcs at points of the domain of the second local chart that do not belong to the domain

of the first one. From (11) and (16), one sees that these points lie exactly within the following

four-dimensional submanifold of R6 \ {0}

Sa :=
{

(r,v) ∈ R6 \ {0} | v // r
}
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and which corresponds, in the (extended) coordinates of the chart (Ub, ϕb), to points such that

θ = 0, φ = 0 or θ = 0, φ = π. Following the previous argument, suppose that there exists

a non-zero measure subset J ⊆ [0, T ] such that the optimal trajectory (r,v)(·) arisen from a

singular control u(·) is such that (r,v)(t) ∈ Sa for every t ∈ J . In particular, suppose that

θ|J(·) = 0 , φ|J(·) = 0 or φ|J(·) = π. Then, almost everywhere in J , (r,v)(·) satisfies
ṙ = −v , L̇ = 0 , l̇ = 0 , θ̇ = ωz2 , φ̇ = −ωz3

v̇ =
fT
m
z1 −

(
d+ ηcm(z22 + z23)

)
v2 ± g .

Since the values of θ and φ remain the same along J , their derivative w.r.t. the time must be

zero. Therefore, almost everywhere in J , the singular control satisfies z1|J(·) = 1, z2|J(·) = 0

and z3|J(·) = 0, which concludes the analysis.
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